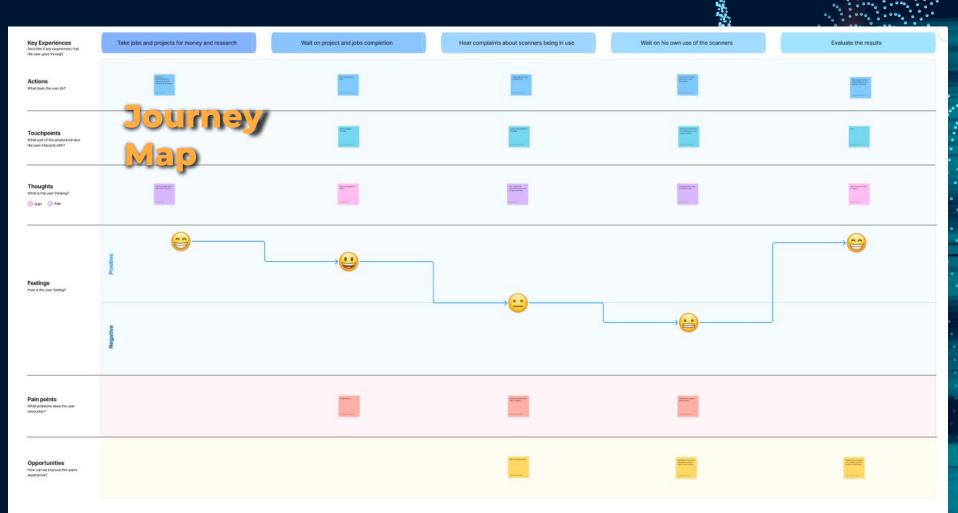
Lightning Talk 6

Design Check-In SDMay25-15 Luke Post, Nate Reff, James Peterson, Daniel Ripley-Betts

Project Overview

- Millimeter wavelength Armed Voron (MAVinator) scanner
 - Voron 3D printer platform
- 3D Scanner design
 - Stepper motor
 - Belt driven gantry
- User interface
 - Web enabled application
 - Python
- Predetermined path to cover the scan bed



Problem Statement

- Time consuming process
- Not enough scanners
- Expensive
- Build cheaper scanner
 - Large scan volume
- Simple user interface
 - Remotely accessed
- Better than ever

Pros and Cons

Pros:

- Will decrease wait times to use scanner
- People will be more efficient in the lab
- Real time updates on line -> uses web app
- Can view the image as you are scanning
- Results display as 3D after SAR processing
- Is relatively cheap compared to other scanners
- Can work at a higher frequency

Pros and Cons

Cons:

- Has a smaller scan area than the rest of the scanners in the CNDE
- The designed pcb has been having technical issues in testing for previous users
- Web app could have bugs that cause the scanner to work incorrectly
- Some assembly required

Complexity Analysis - Human

- Addresses user needs well
- Our mentor and main user has asked that we create a millimeter wave scanner
 - Utilizes a Voron printer and a predesigned pcb
- Started building the Voron and have assembled the pcb
- Creating a GUI and web app
 - Controlled remotely

Complexity Analysis - **Economic**

- Implements a phone application to interface with
 - Other solutions use a PC
- Operates at higher frequencies
- Will have full control over X, Y, and Z axis
- More affordable than existing solutions
- Has a more limited scan area
 - Less volume than existing solutions

Complexity Analysis - Technical

- Voron printer assembly
 - Use ability to understand machinery and effectively read a data sheet
- Solder and programmed two PCBs
- Create GUI and web application
- Utilize SPI interface and FTDI cable
- Generate GCode to control sensor movement
- Use SAR algorithms to analyze data

Conclusions

- Building a high accuracy millimeter wavelength scanner
 - Easy to operate
 - Reasonable scan times
- 3D printed Voron parts for scanner body
- Klipper firmware for the GUI and sensor operation
- Possible areas of concern:
 - PCB functionality
 - Linear Rail Bearings
 - Project Timeline

Thank you