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Executive Summary 
The Center for Nondestructive Evaluation (CNDE) lab plays a critical role in examining 
and evaluating metals and other materials to determine their safety and suitability 
for research, development, and various applications. By using advanced 
non-destructive testing techniques, the lab identifies cracks, flaws, or other potential 
defects in materials before they are used in industrial or governmental applications. 
This evaluation process is essential in ensuring that materials meet safety and 
reliability standards. 

The lab has few scanning products and has tasked us with building a new scanner 
that can be used by the professors and members of the lab. The goal of this project is 
to build a 3D (XYZ) scanning platform for millimeter wave imaging with a similar user 
interface to Klipper or Octoprint. 

The key design requirements are that the scanner must have a motion volume of 
300 mm x 300 mm x 300 mm or larger, and a positional accuracy of 0.5 mm. In order 
to accomplish this we are modifying an open source Voron 3D printer with an 
in-house designed millimeter wavelength PCB sensor set.  As such, the 3D scanner 
utilizes a stepper motor and belt-driven gantry design. The approach for this part of 
the project was fairly simple, we followed a build guide for implementing the Voron 
3D printer, along with manufacturing the PCB sensor set ourselves in-lab. This 
greatly reduces the cost of the design and allows us to focus on the physical and user 
interface. 

The graphical user interface has the following features:  

● General Movement 
● Perform automated scans on a uniform cartesian grid.  
● Perform data collection from a millimeter-wave device.  
● Process the data using SAR algorithm and display the results. 

The core functionality of scanning and data processing has been implemented and 
tested successfully. The user interface has a clean design and provides all of the 
necessary functionality to perform a scan and understand the status of the scanner. 
This was done through the use of html, css, and js for the frontend and using flask 
(python microframework) for the backend, along with integrating Marlin firmware 
into the motion controller. 

In order to access the user interface the user must simply input the device's IP into 
their browser with the port 5000 (<deviceIP>:5000). Our client has stated that this 
qualifies as a Minimum Viable Product, but there is much to be improved upon. 
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The next steps will be to refine the toolhead system, post-processing options, and 
user interface further. No additional hardware or software is required for this, simply 
more time and research are necessary to accomplish these goals. It would also be 
good to implement mesh bed leveling, though this may require additional sensors. 

Other Potential Next Steps: 

● Allow users to define their own scan patterns. 
● Modular sensor classes to support swapping tool heads. 
● Add clipping functionality to SAR generation. 
● Add filtering functionality to SAR generation. 
● Polish user interface.  
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Learning Summary 
The development of the MAVinator scanner provided valuable learning 
opportunities, allowing the team to apply engineering skills and principles 
while gaining hands-on experience in hardware assembly, circuit design, 
software development, and system integration. 
 

DEVELOPMENT STANDARDS & PRACTICES USED 
● Hardware development Practices 

○ Followed structured assembly guidelines using the build guide 
○ Ensuring precision alignment during the gantry assembly to 

meet accuracy requirements. 
● Circuit Design Practices 

○ Designing custom PCBs with proper routing, grounding, and 
power management. 

○ Applying best practices in wiring such as labeling, bundling, and 
securing cables to prevent damage or interference. 

○ Practice safe soldering techniques 
● Software Development Practices 

○ Writing clean, modular, and well-documented Python scripts for 
the backend and data collection. 

○ Testing the motion control firmware using iterative debugging 
and verification procedures. 

○ With multiple threads running concurrently ensure safe memory 
usage at all times. 

○ Camel-case naming convention for the most part, with some 
snake-case for matlab translations. 

● Engineering Standards: 
○ IEEE standards for embedded systems and software 

development. 
○ ISO standards for accuracy and repeatability in measurement 

equipment. 
○ IPC standards for PCB design and manufacturing. 
○ ANSI standards for safe mechanical assembly practices. 
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SUMMARY OF REQUIREMENTS 

● Build Requirements: 
○ Develop a 3D (XYZ) scanning platform for millimeter-wave 

imaging by basing the design on and adapting an open-source 
3D printing platform. 

○ Achieve an imaging volume of at least 300 mm x 300 mm x 300 
mm. 

○ Ensure positional accuracy of 0.5 mm. 
● Mechanical and Electronic Assembly: 

○ Utilize a stepper motor and belt-driven gantry design. 
○ Assemble the mechanical and electronic components of the 

scanner. 
○ Upload and configure the motion controller firmware. 

● Graphical User Interface (GUI) Features: 
○ Enable homing of the scanner. 
○ Allow automated scans on a uniform Cartesian grid or 

user-defined grid. 
○ Perform data collection from a millimeter-wave device. 
○ Process data using SAR algorithms and display results (MATLAB 

scripts provided). 

APPLICABLE COURSES FROM IOWA STATE UNIVERSITY CURRICULUM 
● EE 4140 - Microwave Engineering 

○ This course introduces students to microwave circuit design and 
testing which was valuable in the assembly of the PCBs 

● EE/CPRE 3300 - Integrated Electronics 
○ Circuit design 

● SE/Com S 3190 + Com S 3090 
○ These courses cover software development of frontend and 

backend for designing a website/app using html, css, and 
javascript 

● CPRE 3080 
○ This course was fundamental to understanding system layers 
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NEW SKILLS/KNOWLEDGE ACQUIRED THAT WAS NOT TAUGHT IN COURSES 

This project has provided the team with the opportunity to learn and develop 
a variety of skills that go beyond normal coursework, offering valuable 
hands-on experience in real-world engineering challenges 

● Mechanical Assembly: 
○ Assembling a complex gantry system and aligning axes for 

precise movement. 
○ Understanding and implementing 3D printer-based motion 

platforms. 
○ 3D modeling parts built off of other models to be put to use in 

real life. 
● Raspberry Pi Deployment: 

○ Picking out libraries that support our given architecture. 
○ Headless connection methods. 
○ Built upon previous Linux experience. 
○ Flashing the Pi OS. 

● Circuit Design: 
○ Designing, fabricating, and testing custom PCBs tailored for 

scanner electronics. 
○ 3 out of 4 of us are computer engineering majors and have not 

touched any type of circuit design like this before 
● Firmware Integration: 

○ Configuring and debugging firmware for stepper motors and 
motion control systems. 

● Python Development: 
○ Creating web-based GUIs (Web UI) for scanner operation using 

Python backend frameworks. 
○ Interfacing Python scripts with external sensors and hardware. 

● Measuring using a DAQ: 
○ Understanding how the AD2 reads in values, outputs waveforms, 

can be triggered to take a measurement, and then applying all of 
this in python through their SDK. 

● Millimeter-Wave Imaging: 
○ Understanding the principles of millimeter-wave technology and 

its application in imaging. 
● Project Management: 
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○ Coordinating multi-disciplinary tasks such as mechanical 
assembly, electronics integration, and software development. 

○ Documenting processes and results for academic and 
professional purposes. 

○ Group scheduling and developing a consistent schedule to meet 
amongst ourselves and with our client. 
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1.  Introduction 
1.1. PROBLEM STATEMENT 

Scanning can be a time consuming process and there are often not enough 
scanners to go around. Simply buying a scanner would be an option if they 
were not exorbitantly expensive. Fortunately with a single  Millimeter sensor 
Armed Voron(MAVinator) we can build a cheap scanner with a large scan 
volume. With the addition of a simple user interface that can be remotely 
accessed; Scanning at Center for Non-Destructive Evaluation (CNDE) will 
become better than it ever has been for the technicians, leadership, and 
clients. 

1.1.1. Project Narrative 

Everyone here at the CNDE is well aware of the shortage of millimeter 
wavelength scanners within our facilities. Lab technicians have to work harder 
than ever to ensure their scans in a timely manner so that they do not 
interfere with others using the facilities. This is a problem as millimeter 
wavelength scanning can safely reveal obstructed and less than visible details 
of a medium sized object. In addition to being cool, a lack of access to these 
scanners can result in further project delays due to increased difficulty in 
troubleshooting and evaluation. More scanners would have been purchased 
long ago if it were not for the exorbitant cost of a packaged system. 

So the CNDE is indeed in need of a cheap and effective millimeter 
wavelength scanner solution. That is where the Millimeter wavelength Armed 
Voron(MAVinator) scanner comes in as a viable solution going forward. This 
system makes use of the open-source Voron 3D printer motion system, an 
in-house millimeter wavelength scanner PCB, its sister control board, and our 
design of the physical and digital user interface to allow for a cheap and 
effective machine with a large scan volume and simple user controls. If the 
first build proves the concept, then this system could be implemented on a 
larger scale as well due to the low cost. 

Our project is bringing the MAVinator to fruition and doing it well. A lot of the 
quality of the scan will hinge upon the quality of the printer build, PCB 
testing, and programming of the system, so we will do our best to document 
the process and any areas of improvement to further refine our process. If we 
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are successful we will have a novel fully functioning non-destructive scanner 
operating within the millimeter wavelength range (119-134GHz) for the lab to 
make use of. 

 

1.2. INTENDED USERS 

1.2.1. Background of Users 

Our users have a variety of requirements, but many of them share some 
common needs.  One of these common requirements is that the scanner 
must operate with millimeter waves.  Another common requirement is a 
reasonably short scan time to promote efficiency.  It also must be able to scan 
a 300mm x 300mm x 300mm region.  Additionally the product should look 
professional and have a user interface that is easy to understand, and overall 
easy to operate. We have created some different personas that represent the 
different users and their needs that this project aims to address. 

1.2.2. Four Types of Users 

1. Lab Technician 
Eli needs to be able to scan materials at a quicker rate because he is 
experiencing too much downtime in his project which is leading to 
unmotivated work and adding another scanner could do that.  
 
He also wants to be able to extend upon the research he does in the lab to 
higher frequencies which is why a millimeter wave scanner is important. 

Requirements: 

➢ Functional 
○ Needs a scanner that works in the millimeter wave frequency 

range 
○ Needs the scanner to be able to move in 3 dimensions 

➢ Resource 
○ This system needs to be able to connect to a web app or 

computer to control 
➢ Physical 
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○ Should be large enough to scan the things his boss gives him 
(which will be a max size of 300 mm x 300 mm x 300 mm) 

➢ Aesthetic  
○ The app should look good enough that it is easy to use and 

understand 
➢ User experiential 

○ Needs the software to be easy to use either from a web app or a 
computer connected to the device 

○ Needs it to export a file of the data to be analyzed 

2. Governmental Clients 
As an investigator at NASA Magnum needs to reveal the internal structural 
makeup of his custom manufactured item because he needs to be able to 
make a more informed decision based on that. 

Requirements: 

➢ Functional 
○ Reliable and repeatable results 
○ Analysis even through opaque materials 
○ Non destructive investigations 
○ Reasonable scan times 

➢ Resource 
○ Time it takes to perform the scan is valuable to this type of user 

➢ Physical 
○ Maintain the safety and integrity of the item to be evaluated 
○ Could need anywhere from 1cm x 1cm x 1cm to 30cm x 30cm x 

30cm or possibly larger 
➢ Aesthetic 

○ High fidelity scan results 
➢ User experiential 

○ Simple ordering experience 

3. Private Clients 
Ted needs a way to seamlessly integrate reliable 3D millimeter wave scanning 
hardware and software components into advanced security systems because 
this ensures precise sensing capabilities and simplifies product development 
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for WaveSense Innovations, keeping their solutions at the forefront of the 
industry’s technological advancements. 

Requirements: 

➢ Functional 
○ It needs to be able to do millimeter wave scanning 
○ Scanner must be able to identify various materials within 

scanning area 
○ System should provide API for integration with other applications 

➢ Resource 
○ It should be cheap to build 
○ Scanner should not require more than 4 GB of RAM 

➢ Physical 
○ Could need anywhere from 30cm x 30cm x 30cm to 1m x 1m x 1m 

or possibly more 
○ Total weight should not exceed 5 kg for ease of portability and 

installation 
➢ Aesthetic 

○ Scanner exterior should have modern design 
○ App should have a sophisticated design and be user friendly 

➢ User experiential 
○ Company associates should be able to operate easily 
○ Software interface should be intuitive with clear visual indicators 

and real-time feedback 
➢ Environmental 

○ System should be able to operate indoors and outdoor 
environments 

4. Senior lab Technicians 
As a lead researcher at CNDE, Tabey needs to look deeper inside small 
volumes of material for her own research and vicariously through her team for 
larger projects. Tabey needs a more affordable scanner in the CNDE lab 
because the number of scanners in the lab is too few to effectively complete 
work. 

Requirements: 

➢ Functional 
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○ It needs to be able to do millimeter wave scanning 
○ It needs to fit within the existing lab environment 

➢ Resource 
○ It should be cheap to build 
○ Build time should not be longer than one month 
○ The time it takes to operate should be the same if not less than 

other scanners 
➢ Physical 

○ It needs to be able to be implemented on a Voron printer 
○ It needs to cover an area of 300 x 300 x 300 mm 
○ It needs to make use of the in house millimeter scanner 

➢ Aesthetic 
○ The app should look sleek while still providing good user 

experience 
○ The scanner should look sturdy and professional 

➢ User experiential 
○ Lab technicians should be able to operate easily 
○ The scanner should be able to be remotely started and stopped
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1.2.3. Empathy Map 

Empathy Mapping helps  identify the thoughts and feelings of a user. As our 
primary user is a senior Technician, we used him to create our primary 
empathy map. In this empathy map, we were able to understand how this 
user will interact with the final product . 
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2. Requirements, Constraints and 
Standards 

2.1. REQUIREMENTS AND CONSTRAINTS 

2.1.1. Physical Requirements 

➢ The finished product should easily fit into the CNDE lab environment.  
➢ The overall frame dimensions will be 350mm x 350mm x 350mm.  
➢ The design should be compact, stable, and easy to position within the 

lab setting. 

2.1.2. Functional Requirements (specification) 

➢ Scanner should operate within a volume of 300mm x 300mm x 
300mm.  

➢ Scanner should be able to detect dense materials at least 2.4mm in 
width.  

➢ Sensor head should work with the existing toolhead mount and 
raspberry pi board. 

2.1.3. Resource Requirements 

➢ The scanner should be cost effective, utilizing affordable components 
without sacrificing performance or reliability. 

2.1.4. Aesthetic Requirements 

➢ The final product should look professional, clean, like a commercially 
available scanner.  

➢ The wiring and electronics should be hidden where possible.  
➢ The print head should fit with the aesthetic of the overall build. This is 

aided by the already professional Voron motion system. 

2.1.5. User Experiential Requirements 

➢ The scanner should be designed for ease of use, enabling users to start 
scans quickly without needing to make physical adjustments.  
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➢ Preparation for scans should be intuitive, and the scanning process 
should be as fast and efficient as possible while maintaining accuracy. 

2.1.6. Environmental Requirements 

➢ The design should comply with environmental standards for electronic 
devices, using materials that are durable yet environmentally friendly 
where possible. 

2.1.7. UI requirements 

➢ The user interface should be intuitive, easy to navigate, and designed to 
guide the user through the scanning process with ease. 

➢ The UI should present only essential features, keeping the workflow 
streamlined. 

➢ The design should be visually appealing and cohesive with the 
professional aesthetic of the hardware 

2.2. ENGINEERING STANDARDS 

Engineering standards are an essential part of modern design and 
engineering. Without them the likelihood of two devices using a similar 
communication protocol would drop drastically. Our team has placed a great 
deal of emphasis on recognizing and incorporating IEEE standards where 
possible. Below is an outline of the key standards relevant to our project. 

2.2.1. Built-in Standards 

Built in standards are standards that are implemented by subcomponents 
that our team has no hand in designing but will still be pertinent to know. 

➢ 802.11ac (Wi-Fi standard) 
○ This standard governs wireless networking and communication 

protocols, ensuring our scanner integrates effectively with the 
CNDE lab’s existing wireless infrastructure. Compliance with this 
standard allows for reliable and fast data transmission over Wi-Fi. 
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 2.2.2. Design Standards 

Design standards are standards that are not given to us by subcomponents 
but are selected by design. These are chosen to ensure the scanner complies 
with standards for devices in a similar class. 

➢ IEEE 149: Standard Test Procedure for Antennas 
○ This standard provides test procedures for evaluating antenna 

performance. This standard is applicable to our project because 
we will be using an antenna to transmit and receive millimeter 
waves. Adhering to IEEE 149 ensures that the antenna used in our 
scanner is accurately tested and optimized for effective signal 
transmission 

➢ IEEE C95.3: Recommended Practice for Measurements and 
Computations of Electric, Magnetic, and Electromagnetic Fields with 
Respect to Human Exposure to Such Fields, 0Hz to 300 GHz 

○ This standard addresses the measurement of electric, magnetic, 
and electromagnetic fields, specifically with regard to human 
exposure to such fields. This is applicable to our project because 
we will be using millimeter waves between 119 and 134 GHz  

➢ IEEE 26514: Standard for Adoption of ISO/IEC 26514:2008 Systems and 
Software Engineering--Requirements for Designers and Developers of 
User Documentation 

○ This standard guides the creation of user documentation for 
systems and software products. It is applicable to our project for 
the documentation we create on how to interface with our 
finished product and maintain it. 

➢ P3397: Standard for Synthetic Aperture Radar (SAR) Image Quality 
Metrics 

○ This standard defines quality metrics for SAR imaging systems. It 
applies to our project because we will use SAR to process the data 
and display the results of the scanner 
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3. Project Plan 
3.1. PROJECT MANAGEMENT/TRACKING PROGRESS 

Project Management Methodology: 

We will employ a hybrid approach combining elements of both Waterfall and 
Agile methodologies to efficiently manage the MAVinator project. 

Waterfall Methodology: 

● Phase-based: The project will be divided into two distinct phases: 
Hardware, and Software with the hardware phase scheduled to be 
completed this semester.  The software development phase will consist 
of developing the user interface and development of the frontend and 
backend. This portion is anticipated to approach completion towards 
the end of next semester. 

● Sequential: Certain sprints will rely on others being completed before 
they can begin. The assembly of the sensor tool-head relies on the 
completion of the housing and PCB. The electronic wiring requires the 
frame and motors to be mounted to have anything to wire. Lastly the 
user interface will require all other components be assembled before it 
can begin. 

● Documentation-heavy: Documentation will be maintained throughout 
the project, including requirements/specifications, this design 
document, test plans, and user manuals. 

Agile Methodology: 

● Hardware task decomposition: We have broken down the phases of this 
project into simpler segments or sprints. The housing for the scanner, 
the printer frame, and the PCB as smaller components of the Hardware 
phase can be worked on in parallel. 

● Software task decomposition: Similarly we broke down the software 
development into smaller sprints. The HTTP development of a 
connection between frontend and backend, the BTT Pi imaging, 
websocket integration, frontend polishing, and DAQ + SAR algorithms 
were our major sprints. 
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● Frequent feedback: Regular feedback loops have been established with 
the project stakeholders to ensure that the project is aligned with their 
needs and expectations. 

● Continuous improvement: We have continuously evaluated and 
improved our processes and methodologies throughout the project. 
This has been accomplished through team meetings, and independent 
research. 

We primarily utilized discord for communication and tracking progress, such 
as notes from meetings, progress pictures, and any additional 
documentation/research. We also divided up work and decided on the 
leaders for each milestone over Discord calls together. 

We primarily used github for the software development portion of our 
project. Uploading firmware, frontend code, and flask python backend code, 
with any other additional files. 

3.2. TASK DECOMPOSITION 

 3.2.1. Hardware Task Decomposition 

 

Semester one consisted of the hardware integration. The task decomposition 
starts with the foundational PCB, soldering all components, followed by 
testing the circuit board. The PCB is then ready for the design and print of a 
housing/mount, after which the sensor toolhead is ready for assembly. 
Concurrent to those, the frame and drives are assembled, once they’re ready, 
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the wiring will be integrated. With those two major milestones reached the 
MAVinator is ready for full assembly and our goal for this semester is 
complete. The design and implementation of a software user interface can 
then begin. All throughout the design documentation is being updated, 
referenced, and polished. 

 3.2.2. Software Task Decomposition 

This is the general layout of the software development process of the project 
including the connection from the backend to the frontend through 
websockets and HTTP requests 

 

The task decomposition of the software development process starts with first 
making the initial html, and css files for a general user interface. The next big 
step is the client to server connection using javascript for the frontend and 
the using flask for the backend. While this is happening, uploading the 
firmware to the Octopus main board and testing sending g-code to the 
scanner for general movement and homing functionalities is ongoing. Once 
firmware is on the Octopus an image can be installed on the BTT Pi. After all 
of these steps are completed installing the backend software onto the BTT Pi 
allows for a connection from the user interface to the scanner, thus sending 
g-codes from pushes of ‘buttons’ on the web GUI. Lastly finalizing the 
development of Scanning and SAR algorithms along with cleaning up the UI 
to be User friendly, and testing everything along the way the foundation of 
the software side of the project is complete. 
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3.3. PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA 

Milestones 1 encompasses all work needing to be completed before semester 
two, and Milestones 2 encompasses all following work. 

3.3.1. Milestones 1: 

1. PCB Soldered and ready for testing 
2. Scanner frame assembled with less than 3mm out of square 
3. Scanner hardware interface ready for PCB mounting 
4. Testing of PCB radar completed 
5. Wiring of motion system completed 
6. Sensor mounted, wired, and working on laptop backend 
7. Systems testing started 

3.3.2. Milestones 2 

1. Firmware installed onto Octopus Motion board and basic system 
testing completed 

2. Finalization of software design architecture decisions and basic 
Flask web UI implementation 

3. First version of web UI installation and testing on BTT Pi hardware 
4. Scan pattern generation integrated into scan function and 

outputs an array of g-code commands to specification 
5. Physical mount redesign to accommodate radar swap fits new 

radar and gantry shuttle 
6. Radar scripts re-written to read single shot data read from new 

DAQ and ensure FTDI scripts write PLL registers on the BTT Pi 
7. SAR algorithm processes .scan files similarly to matlab and 

file-system scripts save .scan files where the user selects 
8. Final testing + Presentation, the general sharing of insights 

gained and success achieved 
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3.4. PROJECT TIMELINE/SCHEDULE 

This is the schedule the project has followed for the hardware development 
portion. The scanner electric wiring end date has had to be pushed out by 
one week, resulting in an overlap with the housing design. 

Milestone 
Start 
Date 

End 
Date 

Len
gth 

Progres
s/status 

Lead Notes 

Soldering sensor 
PCB 

10/7/2
024 

10/17/
2024 

10 100% Luke 
The spi connectors 
were originally put on 
reversed 

Testing of sensor 
PCB 

10/17/
2024 

10/31/
2024 

14 100% 
Luke, 
James 

 

Scanner frame and 
motion system 
hardware 

10/16/
2024 

10/23
/2024 

7 100% 
Nate, 
Daniel 

Two of the rails, one z 
one y are short 
bearings 

Scanner electronic 
systems 

10/23/
2024 

11/7/2
024 

15 100% 
Nate, 
Daniel 

 

Housing of sensor 
10/31/
2024 

11/14/
2024 

14 100% Daniel  

Complete motion 
systems testing 
with mount 

11/14/
2024 

11/21/
2024 

7 100% 
Collectiv
e 

Thanksgiving break 
after 

Holiday 
11/29/
2024 

1/21/2
025 

53 100% 
Collectiv
e 

Holiday 

Return/Reorganize 
after holiday 

1/21/2
025 

2/9/2
025 

19 100% 
Collectiv
e 

Back from Holiday 

Finish physical 
testing/Lab access 

2/10/2
025 

2/21/2
025 

11 100% 
Nate + 
Dan 

 

Octoprint 
plugins/mods 
design decision 

2/10/2
025 

2/14/
2025 

4 100%  
We will develop a 
webserver in python 

Initial design of 
User interface - 
Frontend 

2/10/
2025 

2/14/
2025 

4 100% Nate Html + css + js design 

Implent Flask 
based design 
(standalone) 

2/15/2
025 

3/17/2
025 

30 100% 
James + 
Luke 

Specifically the UI 
elements necessary for 
project requirements 

Installing/Testing 
Python on 
Raspberry Pi 

2/21/2
025 

2/28/
2025 

7 100% 
Dan + 
Nate 

 

Create Python 
script to generate 
scan patterns 

2/28/
2025 

3/3/2
025 

3 100% 
Luke + 
James 

Fired after each 
movement to a new 
point 
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Physical mount 
integration 

3/3/2
025 

3/6/2
025 

3 100% Daniel  

Integration of SAR 
script and radar 
script to backend 

3/6/2
025 

3/17/2
025 

11 100% 
Luke + 
James 

Pre+Post-scan 
processing 

Spring break 
3/17/2

025 
3/21/2

025 
4 100%   

Frontend Polish 
and refinement 

3/21/2
025 

4/2/2
025 

12 80% 
Nate + 
James 

 

Software testing / 
Internal 
demonstration 

4/2/2
025 

4/15/
2025 

13 0% Daniel  

Design 
Documentation 

4/16/
2025 

4/20/
2025 

4 0% 
Collectiv
e 

 

Poster Design + 
Practice 

4/24/
2025 

4/28/
2025 

4 0% 
Collectiv
e 

 

Prep Week + 
Presentations 

5/5/2
025 

5/9/2
025 

4 0%   

 

 

3.5. RISKS AND RISK MANAGEMENT/MITIGATION 

 3.5.1. Key Risks: 

The "Key Risks" section is crucial for identifying and mitigating potential 
issues that could hinder the project's success. By proactively recognizing 
these risks, the team can develop strategies to minimize their impact and 
ensure the MAVinator project stays on track. The risk matrix is a more 
graphical way of visualizing their categorization. 
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Risks - Core Details 

Rank & 
Trend 

Risk Title Approach Likelihood Consequences 

1 PCB does not work as 
intended initially 

M 5 3 

2 Physical build runs over 
schedule 

W 2 4 

3 Linear rail missing 
bearings 

A 5 1 

4 PCB has catastrophic 
short 

A 1 5 

5 Frame out of square 
during testing 

W 2 1 

6 Sensor toolhead 
cannot determine 
location 

M 1 5 

7 Over-voltage motors R 1 2 

8 Electrical interference M 3 4 

9 Data could be lost 
during a scan 

M 3 3 

10 User entered Z-height 
too low 

M 3 5 

 

Risk Assessments - Descriptions & Mitigations 

Rank & 
Trend 

Risk Title Description Mitigation 
Strategy 
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1 PCB does not 
work as intended 
initially 

A fixable issue occurs with 
PCB sensor, could not scan 

 

2 Physical build 
runs over 
schedule 

Build runs into next 
semester, could not scan 

 

3 Linear rail 
missing bearings 

One linear z and y rail are 
missing <4 bearings, 
accepted, plan to replace 

 

4 PCB has 
catastrophic 
short 

A short bad enough it 
burns the board irreprably, 
could not scan 

 

5 Frame out of 
square during 
testing 

Frame out of 
square/gantry not 
de-racked results in 
inaccuracies, could scan 

 

6 Sensor toolhead 
cannot 
determine 
location 

Sensor loses or has no way 
to determine position, 
could break sensor PCB 

Emergency stop 
on all pages 

7 Over-voltage 
motors 

Motors run over-voltage 
due to improper driver 
config, burnt out, could 
scan 

 

8 Electrical 
interference 

Interference impedes 
accurate measurement, 
need to eliminate internal 
sources 

Electrical 
shielding on all 
A/B motor wires 
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9 Data could be 
lost during a 
scan 

Data lost on page refresh 
(front-end) or power loss 
(back-end) 

Save data to file 
as read, process 
on backend 

10 User entered 
Z-height too low 

Low Z-height could 
damage object or sensor 

Enforce 
minimum 
Z-height at all 
times 
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3.5.2. Risk Management Matrix 
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3.6. PERSONNEL EFFORT REQUIREMENTS  

3.6.1 Hardware 

Milestone Person-hours 

Soldering sensor 
PCB 

15 

Testing of sensor 
PCB 

10 

Scanner frame and 
motion system 
hardware 

24 

Scanner electronic 
systems 

16 

Housing of sensor 12 

Complete systems 
testing 

8 

3.6.1 Software 

Milestone Person-hours 

Frontend UI 
development 

15 

Main backend flask 
development 

55 

New mount 
customization and 
wiring setup 

10 

Connection to 
Raspberry Pi 

10 

Scan pattern 
generation 

10 

Firmware + backend 
research 

13 

Firmware 
customization 

10 

30 



FTDI from BTT Pi 
troubleshooting 

10 

Digilent DAQ 
programming + 
Troubleshooting 

20 

SAR Script Migration 35 

 

3.7. OTHER RESOURCE REQUIREMENTS  

3.7.1 Hardware 
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Part Quantity 

Millimeter 
wavelength 
transceiver board 

1 

Transceiver control 
circuit board 

1 

Voron printer kit 1 

Raspberry Pi 1 

Computer 1 

FTDI cable 1 

Coaxial cable 4 

Loctite 1 

3D printer (to 
manufacture 
mount) 

1 

Digilent Analog 
Discovery 2 + BNC 
Breakout board 

1 

Part Quantity 

Cable Management 
Kit 

1 

USB A (male) -> USB 
C (male) cable 

1 

Faraday insulation 10ft 



3.7.2 Software 

Python Libraries Used: 

Library Use 

flask Build web applications and APIs in 
Python 

semantic Design user interfaces for web 
applications (HTML/CSS/JS framework) 

pydwf Control Digilent WaveForms hardware 
devices (like Analog Discovery) from 
Python 

serial Communicate with devices over serial 
ports (COM, tty). 

ftd2xx Interface directly with devices using 
FTDI USB chips via D2XX drivers 

matplotlib Create static, animated, and 
interactive plots and visualizations 

numpy Perform efficient numerical 
computations using arrays and 
matrices 

Marlin (firmware) Uploaded to motion controller for 
proper sensor movement 
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4. Design 
4.1. DESIGN CONTEXT 

  4.1.1. Broader Context 

In a broader context, the MAVinator is designed for any NDE community that 
is seeking to utilize millimeter wave imaging. Not only does this affect the 
specific NDE industry, but also all of the industries that rely on NDE to ensure 
product safety such as the automotive industry, space industry, Navy, and 
many more. Equipment such as the MAVinator is utterly important due to the 
enhanced safety it brings to those industries. Faults and defects are able to be 
detected prior to the product entering the market while saving the 
companies money as this method of examination is noninvasive and leaves 
the product perfectly functional. 

Area Description Examples 
Public 
health, 
safety, and 
welfare 

The main purpose of the 
MAVinator is to detect faults, 
cracks, and any other defects 
in products before they reach 
the market or are used  for 
their intended purpose. 
Being able to discover these 
things prior to use ensures 
damaged products don’t 
leave the manufacturing line 
and provides more safety in 
every industry that it is 
utilized.  

A Chinese commercial 
rocket had a defect in 
the foam insulation 
which fell off on launch 
and caused rocket failure 
(i.e. blow up). This could 
have been detected 
using millimeter wave 
scanning devices. 

Global, 
cultural, 
and social 

The MAVinator is designed 
around meeting the goals of 
the industry, which are to 
provide reliable methods of 
scanning objects to ensure 
their safety and functionality.  

Development and 
operation of the 
MAVinator will allow NDE 
researchers and 
scientists the ability to 
perform scans of 
materials that returns 
accurate results while 
minimizing 
opportunities for human 
error. 
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Environme
ntal  

The MAVinator can have a 
great impact on the 
environment as it tests 
objects without destroying 
them and is predominantly 
made from 3D printed parts. 

Decreases the amount of 
waste from safety testing 
in the automotive and 
space industry as all of 
the tested material is still 
usable. 

Economic Our product, the MAVinator, 
will speed up scan times and 
therefore reduce the cost to a 
consumer. It is also relatively 
cheap to produce in and of 
itself which enables more 
people or companies to 
utilize it. 

The MAVinator is more 
affordable than other 
current millimeter wave 
scanning devices and is 
open source so other 
users can build off of it, 
reducing cost. 

 

4.1.2. Prior Work/Solutions 

Millimeter and microwave sensing have been used extensively over the past 
two decades for military, security, and general radar purposes to detect things 
invisible to the naked eye. This is due to the wavelengths being able to pass 
through most porous material, such as fabric, fog, or foam, and show any 
more reflective, usually metal, object on the other side. The first papers 
presented in this realm were in 1997 about smart technical guidance systems, 
surveillance, and concealed weapon detection [2]. Shortly after, the origins of 
what we now see used for security in airports, the L3 Provision, was presented 
in 2000. That device uses an array of millimeter wave transceivers operating in 
the range of 16 - 30 GHz to scan a person in a cylindrical manner. It then 
performed synthetic aperture holographic methods to reconstruct a 
high-resolution image of the scan target.  

This technology has since been shrunk down to a handheld application called 
MilliCam by Saadat and Ramanathan, et al. [3] This application uses the 
synthetic aperture radar (SAR) imaging algorithm to map the reflection to the 
spatial domain. One of the main challenges in transforming these millimeter 
sensors into handheld devices that operate in the nearfield is the loss in 
image quality due to aperture motion. The Fourier transform equation used 
to do the SAR calculation relies on precisely known coordinates of the 
aperture location, and any error over  a half-wavelength (which is 2.5 mm at 
60 GHz) can distort the image. [3] fixes this problem by employing a 
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co-located optical camera. The Millicam can use this to compute the position 
and trajectory of the device during a hand-swipe measurement. Squint 
correction was also used to further enhance the image quality.  

For our purposes, we are interested in millimeter wavelength technology 
specifically for nondestructive Evaluation (NDE). In this field, millimeter wave 
imaging has been used to detect surface cracks in metal [4], building and 
concrete infrastructure [5, 6], and composite material assessment [7]. This 
technology has been advanced by Yalcinkaya, Aydin, and Kara [8] to become 
simpler and more affordable. In their study, parameterized control over the 
sampling intervals, scanning aperture, and chirp settings was integrated to 
eliminate the need for complex processing while still maintaining 
high-quality imaging. One Tx and one Rx antenna operating in the range of 
77 and 81 GHz were mounted on a scanning system that could move both 
vertically and horizontally. The antennas were then moved in a raster manner 
to scan the target. SAR processing was then completed on the data. It is 
important to ensure the spatial sampling interval satisfies the Nyquist 
sampling criterion to avoid aliasing so ghost targets do not appear. This 
system also used a graphical user interface (GUI) on a host computer to 
control the movement and scan settings of the device, as well as to display 
the SAR results.  

Furthermore, the CNDE already utilizes 2D scanning systems using 
microwave wavelength technology for NDE purposes. These systems use 
Labview to control the movement of the target while the sensor remains in a 
fixed location and to collect the data. MATLAB is then used to perform SAR 
processing on the data resulting in a 2D and 3D image. The CNDE commonly 
uses these imaging systems to detect surface cracks in metal and defects or 
abnormalities within foam or other low dielectric materials. Image quality of 
these scans can be improved by pre-processing the data before SAR 
calculations are performed. These methods have been shown to easily detect 
rubber pellets inside of foam, short thin wires, and cracks and defects in a 
wide range of materials.  
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4.1.3. Technical Complexity 

Our project, the MAVinator, contained many components of technical 
complexity that challenged every member of the group and helped us to 
grow in our understanding of engineering. Our work crossed several 
disciplines, not all of which we were familiar with previously, including 
mechanical system building, precision electronics assembly and testing, web 
application creation, including front and back end, device control, data 
collection and processing, and testing.  

The MAVinator began with the build of the Voron printer which consisted of 
several components and complex mechanics. One of the largest components 
of the build was the gantry system which controls the position of the sensor. 
This system involved multiple components on its own which all had to be 
perfectly and precisely aligned to function correctly. Since this controls the 
position of the sensor, if anything was out of alignment, it could cause serious 
errors such as crashing into the boundaries, reporting back incorrect 
locations, and recording data incorrectly. During the build, changes to certain 
aspects of it had to be made to align with our project goals. This required 
much adaptability and problem solving as we figured out what worked and 
what didn’t work in our system. This Voron build also included the integration 
of electronics, a Raspberry Pi and Octopus MCU, which needed to be able to 
communicate between the user's input and the function of the Voron. 

Digging into the electrical engineering side of things, a pair of PCBs needed 
to be soldered for the sensor portion of the project. This required precision 
soldering under a microscope and extensive testing to ensure that each PCB 
was functioning as expected. This is a critical part of any PCB design in all 
industries as a single short in an electronic can permanently damage an 
entire system.  

We were also tasked within the scope of the project to create a modern web 
application used to control the Voron and sensor. This required extensive 
research into GUI design and aspects of frontend and backend coding. 
Communication in this part of the project was even more vital than before as 
none of the members had much or any experience creating a GUI to interact 
with a physical system which meant we were continually learning along the 
way. The GUI was designed to meet professional standards in terms of 
physical appearance, user interaction, and code readability.  
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Adaptability ended up being a major slogan for our project by the end, 
especially relating to the device control and data collection. Our project 
required us to interact with a Raspberry Pi, Octopus MCU, sensor PCB, and a 
digital acquisition (DAQ) device. All of these needed to be able to 
communicate with each other and work together to make our project 
function. This system was up and running, but with two weeks before the 
project deadline, our sensor was needed for a different project, as well as the 
DAQ we were using. We were unable to be provided with the same sensor, 
but a new one was given to us, even though our advisor specified we would 
be using the other sensor we had built. The new sensor had to be 
programmed slightly differently, and the new DAQ had to be completely 
reprogrammed. With only two weeks left, this required quick thinking, 
determination, and adaptability to get our project up and running.  

In the end, all of these components had to be seamlessly integrated together 
to provide the user with a pleasant experience while also upholding the 
integrity of the functionality of the system. 

4.2. DESIGN EXPLORATION 

4.2.1. Design Decisions 

The MAVinator project aimed to develop a cost-effective, 3D scanning 
platform for millimeter-wave imaging. Our initial design decisions were based 
on specific hardware components and their pre-made software frameworks, 
carefully selected to meet project requirements and client needs. However, as 
is often the case in complex engineering projects, we encountered 
unforeseen challenges that required us to adapt and modify our approach. 
Notably, late-stage changes in available hardware, specifically the Digital 
Acquisition (DAQ) device and the radar sensor, necessitated significant 
adjustments to our design and implementation. 

Initially, we needed to design a housing for the sensor PCB. This is important 
for a couple of reasons.  To protect the PCB from the elements to ensure the 
product works reliably, provide a more professional looking design, and 
ensure optimal sensor positioning/angling. For this mount, we have 
significantly deviated from the prototype first designed by Aaron McCarville. 
This was the optimal solution for us as we could extract all the measurements 
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directly from the existing STL (file format used to represent 3D models) and 
start over with them.  

The next major component we had to design was a UI to control the scanner.  
This is needed in order to complete scans and view the results in a human 
understandable format. For this, we chose to utilize Python as the base 
language for the backend with libraries to supplement our needs. We chose 
Python due to its widespread support, clients request, and ease of use, 
allowing the users to update the UI down the road as well. Flask has been 
researched as the primary library for the GUI design due to its ease of use and 
broad support as well. We designed the frontend with html, css, and 
javascript and set up POST and GET endpoints for frontend-backend 
integration. 

We designed a calibration/testing method for the scanner and sensor.  This is 
vital in completing scans as it will position the scanner in a known position to 
accurately image an object. We used three limit switches for homing the X, Y, 
& Z axes. When the home button is pressed in the GUI, the sensor will move 
all the way in one direction on the x-axis and do the same for the y-axis to get 
its location in those planes. Then, it will move up until it hits another limit 
switch at the top of the Voron frame, allowing the sensor to know its relative 
location at all times.  

For scan pattern generation, the decision was made to implement a system 
that mainly operates within a cartesian grid but could be easily customized. 
This approach ensures basic functionality while leaving room for expansion. 
The initial focus is on a grid pattern as it meets the core requirement of 
systematic scanning. This involves calculating a series of XYZ coordinates 
within the defined scanning volume, which are then translated into G-code 
commands for the scanner's motion controller. If the users scan dimensions 
are not easily divisible by the step size, then we chose to let the user decide 
how to handle the resolution themselves with a notification and suggestion. 

Regarding SAR processing, rather than developing the algorithms from 
scratch, we decided to port existing MATLAB scripts to Python. This decision 
was primarily driven by efficiency and accuracy. The MATLAB scripts had 
already been validated and tested, ensuring the reliability of the SAR 
processing. To facilitate this, AI tools were employed to assist with the 
translation process. This approach may have moderately increased the time it 
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took when compared to rewriting the complex algorithms manually. Utilizing 
AI for this task seemed to complicate things in some regards, but did help to 
understand some available tools. 

At the last minute we discovered that we needed to switch to a new Digital 
Acquisition (DAQ) device as the National Instruments (NI) DAQ did not have a 
library that supported Linux. The NI DAQ originally had pre-written code that 
would work for our purposes and we had to recreate the functionality for the 
new Digilent Analog Discovery 2, which now serves as our DAQ. We briefly 
considered using the AD2 to take the place of the FTDI cable but decided 
against this in the end due to time constraints. 

4.2.2. Ideation 

For the UI, we went through multiple iterations of design concepts. One idea 
was to build off the previous UI using Labview, but this UI was not 
user-friendly and needed improvements.  Our next option was to build the UI 
from scratch, given our ideas; however, this left some unknown variables for 
the client and unfamiliarity with the current UI. We then thought that we 
could build a modification for an existing library like Octoprint or Klipper, 
though this would impose too many requirements and dependencies on our 
project. Ultimately we wound up deciding on building a Web based user 
interface similar to the likes of Klipper using Flask. It would be built in such a 
way that mimics the physical interfaces of existing lab equipment. 

With the scanner body (Voron motion system), we had fewer ideas to work off 
of as a bulk of the design was set by the kit designer. The bulk of the decisions 
were between modifications to the kit and the firmware to use on the 
Octopus MCU. The modifications considered were switching out limit 
switches and adding cable insulation to motor wiring, and location/firmware 
definition for Z-max movement limit switch. 

At first, we were only looking at the build as laid out by the kit. In the later 
stages of the scanner's construction, modifications to the kit began to be 
considered as options. We found the options available to us through 
discussion with print enthusiasts and research online with the exception of 
the cable insulation. Ultimately, we decided to get the scanner up and 
running as simply as possible with a first prototype motion system. The 
decision to insulate the motor cabling came from an examination of the 
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pre-existing scanners and a discussion with our advisor. These talks ultimately 
led us to believe the shielding for the A/B motors would be necessary to 
mitigate the electric interface in the scan. 

The process of deciding a firmware has been a bit of a winding road. Initially, 
we selected Klipper for the firmware to be installed on the Raspberry Pi, 
which would then flash firmware to the Octopus MCU. We moved away from 
this idea primarily because of the existence of Marlin firmware that was used 
in the previous version of this scanner that could be modified for our 
purposes. This also shifted our goal of software design as now we would be 
interfacing with the Octopus running the firmware with the Raspberry Pi 
acting as a server/controller. 

We went through several ideas of how the file management and SAR 
processing would be handled. Initially we were working towards having the 
file creation and saving along with SAR processing done on the frontend. This 
was to minimize the load on the BTT Pi, however, we quickly realized that the 
frontend would lose the data if the page was refreshed which would not work. 
In the end we decided on the backend creating and storing one scan's worth 
of data in a temporary file and the client downloading it. Likewise we elected 
to handle the SAR processing on the backend, uploading the unprocessed 
.scan file and generating a SAR image that is transmitted back. 

When generating the initial pattern for scanning we took in a lot of user 
feedback to ensure it would provide the needed functionality. At first we 
simply rounded the differences if the length or width was not divisible by the 
step size, additionally, we only had one step size for both length and width. 
After taking in feedback we implemented a prompt for the user to select 
what they would like to change the scan parameters to evenly divide, the 
length or step size for the length. Lastly, we implemented independent step 
sizes for lengths and widths. 

Deciding on an operating system was simple after our research indicated that 
the lightest weight operating system was a customized lightweight Debian 
provided by Big Tree Tech (BTT) themselves.  

When we learned that the National Instruments (NI) Digital Acquisition (DAQ) 
device would work, deciding on a new DAQ to use was made easier by Dr. 
Tayeb’s suggestion of the Digilent Analogue Discovery 2. Though we did need 
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to do additional research to ensure that it would work on Linux and could 
serve our purposes. 

 

4.2.3. Decision-Making and Trade-off Tables 

Using Previous UI 

Pros Cons 

Easy to implement Not user friendly 

Familiar to client Clunky 

Know it works Not portable 

Made in-house Uses LabView 

Building from Scratch 

Pros Cons 

Made to our needs Hard to implement 

Customizable Not familiar 

Can work with tools we know Time-consuming 

Can be made with Python  

Can be made easier to maintain  
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Utilizing Marlin Firmware 

Pros Cons 

Basic version provided to us Every change requires compilation 
and flashing 

Has better support community Does not include web interface 

Runs only on the Octopus MCU, 
reducing demand on Raspberry Pi 

 

Simpler in concept as we can make 
direct modifications to the firmware 

 

Utilizing Klipper Firmware 

Pros Cons 

Easy and quick updates and/or 
modifications 

Documentation may be out of date 

More actively supported Harder to modify for large changes 

Has a web interface Changes are made via changes to a 
configuration file 

 The nature of Klipper means that it  
must support needed commands, or 
require a custom plugin library for 
support of unusual commands like 
triggering the sensor. 

After weighing the Pros and Cons we decided to use the Marlin firmware due 
to our advisor/client already having it ready for us to use. We still needed to 
make modifications to support our style of movement and homing. 
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Frontend SAR and File system 

Pros Cons 

Not hardware constrained Catastrophic data loss on page 
refresh 

 Browser performance could 
negatively impact output 

 

Using Debian over Armbian 

Pros Cons 

Light weight No desktop environment 

Support direct from manufacturer  

 

Switching to new Digilent DAQ 

Pros Cons 

Works on linux Rewrite entire reading code 

Has a python library that works on 
linux 

Lose the differential input, increase 
in noise 

MAVinator would not require an 
external computer running windows 
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4.3. FINAL DESIGN 

4.3.1. Overview 

Our project is to build a 3D scanning platform designed specifically for 
millimeter-wave imaging, allowing users to capture detailed internal aspects 
of an object. Similar in principle to a 3D printer, this machine will be a scanner 
that will move in three dimensions: X, Y, and Z directions. Instead of printing, 
our scanner will use a specialized millimeter-wave sensor device to capture 
internal aspects of objects in its imaging area.  

The frame of the scanner allows for 300 mm3 of space across all directions. 
The movement of the scanner head will be powered by stepper motors and 
belts, to allow for a smooth and accurate scanning movement. The motors are 
small motors that rotate with the belts connected to them to allow for the 
movement of the gantry system. 

The central portion of the machine is the millimeter-wave imaging device, 
which will collect data by sending out and receiving millimeter-wave signals. 
The data from this device lets us create a 3D map of the object. This wound 
up needing to be replaced with a new radar as it was required for other 
purposes in the CNDE.  

In addition to the physical portion of this project, a GUI is developed to allow 
users to interface directly with the scanner on a web based application. The 
users have the ability to move the sensor in any direction, go to certain 
coordinates, or home any axis or all the axis 

The other main functionalities are the ability to scan an object by applying 
scan configuration values and also viewing real time data. Lastly they are able 
to upload a .scan file as scan data and calculate SAR. 
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4.3.2. Detailed Design and Visual(s) 

The detailed design is separated into two different sections: Hardware and 
Software. The Hardware section covers the physical build of the scanner and 
the integration of the gantry system and electronics. The Software section 
covers all the files created and the creation of the user interface and the 
connection from the application to the scanner along with the functionalities. 

1. Hardware 

Frame 

Our design plan requires us to start with the assembly of the frame for the 
scanner. Extra Care is taken to ensure that the corners are Square from the 
start of the build. We define our X, Y & Z. This is shown in Figure 4.3.2-1. 

Motors 

The z-motors are placed under each of the 
bottom corners, working as legs for it 
(Figure 4.3.2-4). These motors are 
connected to a drive train gear reduction, 
the output of which is connected to the 
corners of the gantry. This allows the gantry 
to move along the Z axis as the belts move 
through the idlers.  

Gantry System 

The X and Y rails are implemented on the 
inner workings of the printer, creating the 
gantry system. A/B belts run along each rail, 
which allows the sensor head to move in the X and Y-axis while the entire 
gantry system moves vertically. Both A/B are connected directly to a gear on 
the motors, then attached to the idlers and toolhead mount to be able to pull 
it one direction or the other. This happens with a differential between the 
motors.  
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When there is a differential between them the toolhead moves in the Y-axis 
and if they are moving simultaneously then the toolhead moves in the X-axis 
(see Reference Mechanism: Figure 4.3.2-3). 

Electronics 

On the bottom of the scanner is where all the electrical parts are located. 
These parts include a Raspberry Pi, controller board, 24V Power Supply Unit, 
and Power inlet. These will collectively control the Scanner. 

46 



Sensor 

The most important part is the scanner head. It is a combination of two PCB’s 
(printed circuit board). One, Figure 4.3.2-7, is known as the control board, 
which is connected to the electrical components on the bottom via wire to 
control the other PCB for sensing. The second PCB is known as the sensor 
head. This component is the actual sensing piece that will send and receive 
millimeter wave scans. Figure 4.3.2-8 is the combination of those 2 PCBs that 
will be a part of the scanner head that will connect to the middle of the 
gantry system. The two of them combine to allow the control board to 
interpret the raw data returned from the sensing board then output it via SPI 
cabling through the DAQ. This is then stitched together using SAR algorithms 
to create a composite image. 

Diving further in, the imaging device or radar is actually composed of several 
parts. The Digital Acquisitions (DAQ) device reads data out of the I+/- and Q+/-, 
and depending on the configuration this can trigger the radar sweep as well. 
The FTDI cable powers the radar, configures its registers, and commonly 
triggers the radar frequency sweep. We wound up switching from a National 
Instruments (NI) DAQ to using the Digilent Analog Discovery 2. This was due 
to a lack of Linux support from the NI DAQ. 
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2. Software 

To ensure easy and convenient control of the scanner, we will implement a 
web application that runs directly on the Raspberry Pi, which will serve as the 
central control hub for the scanner. 

The development of the interface and connection to the scanner included the 
implementation of html and css for the view of the application. The general 
functionality of how the front-end communicates to the backend and how 
the back-end communicates with the scanner is shown in Figure 4.3.2-9 
below 

 

Frontend-to-Backend 

In the frontend, a javascript file, embedded in the web interface, handles all 
communication between the frontend and backend via: 

● HTTP Post Requests: Used for actions such as: 
○ Sending movement commands 
○ Initiating a scan with user-defined parameters 
○ Uploading .scan files 
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● HTTP Get Requests: Used for: 
○ Retrieving scanner status 
○ Querying scan results or system logs 
○ Position updates 

● Websocket communication: enables real-time bidirectional messaging 
between the frontend and backend, including  

○ Live positional feedback during movement  
○ Live status updates during scanning 
○ Automatic saving on scan complete message 
○ Notifications of system errors or completion events 

These connections ensure the interface remains responsive and informative 
during all scanner operations. Below shows the frontend-backend 
communication via a POST request to move the sensor in a certain direction. 

Backend 

The backend is built with Flask 
hosted on the Raspberry Pi. It is 
responsible for:  

● Parsing and validating user 
inputs 

● Generating appropriate 
G-code commands 

● Sending commands over 
serial to the Octopus MCU 

● Processing scan data and saving it to .scan files 
● Trigger and manage scans 
● Initiating SAR processing scripts 
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The Flask server also serves the static frontend files and acts as a bridge 
between the user interface and the scanner hardware. As seen in the software 
diagram, we started with a series of separate files for the backend and wound 
up consolidating them all into one large file. In the end the MAVinator.py file 
contained all logic aside from the DAQ, radar, and scan pattern generation 
logic. 

G-code + Hardware Control 

All scanner motion and toolhead control are implemented using G-code, 
which is interpreted by the Marlin firmware on the Octopus MCU. Key 
functionalities include: 

● Movement Commands: G0/G1 for linear motion, e.g., G1 X100 Y100 Z10 
F3000 

● Homing: G28 for homing all axes 
● Scan Execution: Custom G-code sequences for moving in a grid and 

pausing for data acquisition and movements to complete. 
● Digital I/O: Used to trigger scans and synchronize with the radar 

hardware 

Each button press in the interface results in the corresponding G-code being 
sent via a serial connection to the controller, ensuring deterministic and 
repeatable behavior. Figure 4.3.2-12 shows the terminal output of clicking the 
move button on the positive x with the input value of 30. It shows the 
corresponding g-code that is being sent to the motion controller. 

In order to accommodate the new radar and DAQ we had to somewhat 
restructure how we had them wired together and mounted. The new radar 
has a very similar connection method and can be seen in figure 4.3.2-13. Still 
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using a FTDI cable we simply had to match the inputs and then connect the 
other end to our BTT Pi. 

 The DAQ did however require a junction with the purple (trigger) wire to one 
of its DIO pins in order for it to be triggered. The DAQ also required us to 
connect the I- and Q- lines to ground and simply read the positive outputs. 
The specific configuration of the Analogue Discovery 2 using the Digilent 
Waveforms python library was considerably more difficult to understand at 
first. Ultimately we needed to change the trigger position to be -½ the 
sample time as the trigger is meant to happen halfway through your reading 
by default. The DAQ is then connected back to the BTT Pi via USB. 
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Visual Interface Layout 

The web interface is divided into three main tabs: 

● Move Tab: 
○ Buttons for X, Y, Z movement 
○ Homing controls 
○ Live coordinate display 

● Scan Tab: 
○ Input fields for scan configuration (start/end positions, step size, 

delay) 
○ “Start Scan” button 
○ Live scan progress updates 
○ Data preview plot 

● SAR Tab: 
○ Upload form for .scan files 
○ SAR processing parameter inputs (e.g., resolution, clipping) 
○ “Generate 3D SAR” button 
○ Output display area 

Each tab is designed with clarity and responsiveness in mind, utilizing CSS 
grids, semantic UI components, and error feedback alerts. Figure 4.3.2-14 
shows the first page that you see when you open the application. It shows the 
move page and all the proper functionality. Additionally it has the banner tab 
on the top to go to either the Scan or SAR tab. 
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Scanning 

When on the Scan Tab, you can implement a scan and see the results in real 
time. As shown in Figure 4.3.2-15, in order to scan you need to input multiple 
different values for configuration such as: Name; X, Y and Z length and height; 
and X and Y step size. In addition to this you can click the “Configure” button 
which is optional and get a prompt shown in figure 4.3.2-16 asking for 
specific frequency and time parameters. Once everything is configured, after 
clicking “Start Scan” you will start to see real time data being plotted. 
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Sar Processing 

Upon completion of a scan, the .scan file can be saved and the user can 
upload any .scan file via the SAR tab and run SAR processing manually, by 
providing the Max Z depth and Z step size. 

After clicking the Calculate 3D SAR button, The SAR Heatmap Slice output is 
displayed on the SAR tab as a downloadable image. The Below figure shows 
this page and how everything is laid out. 

Error Handling and Logging 

The system implements robust error handling across all layers: 

● Frontend: displays error alerts for invalid inputs or disconnected devices 
● Backend: logs all system events and errors to a text log, accessible via 

the interface 

54 



● Serial connection watchdog: detects dropped connections and 
auto-resets the controller 

This is also implemented in the status bar in the top right corner of every tab 
as shown in the figures above. It outputs any error that occurs. This ensures 
maintainability and transparency for debugging. 

4.2.3. Functionality 

Our 3D scanning platform is designed to be intuitive and easy to operate, 
even for users without technical expertise. The system integrates a web 
application that controls the scanner remotely. Below, we outline how a 
typical user might interact with the system and how it would respond. 

1. Setup and Initialization 
a. User Action: the user powers on the scanner and opens the web 

application on a browser. 
b. System response: The web application connects to the Raspberry 

Pi, which serves as the control hub and initializes communication 
with the scanner's hardware. The user is greeted with a welcome 
dashboard. 

2. Manual Control Functionality 
a. User Action: The user manually moves the scanner using 

directional buttons or go to coordinates inputs and button. 
b. System Response: The scanner interprets these inputs as G-code 

commands, moves to the specified position, and updates the live 
coordinate display on the GUI. 

3. Homing and Alignment  
a. User Action: the user selects the ‘home and align’ button to 

ensure that the scanner is in the correct starting position 
b. System Response: The Scanner head moves to its home position 

in the XYZ space, preparing for a scan 
4. Running the Scan (Scan configuration: 

a. User Action: The user inputs configuration values and clicks the 
“Start Scan” button on the web application 

b. System Response: The scanner's stepper motors, connected by 
belts, begin moving the scanner head along the XYZ coordinates 
while the mm-wave imaging device collects data by emitting and 
receiving millimeter waves. This data is relayed back to the 
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Raspberry Pi for processing. The web application provides 
real-time feedback, displaying a progress bar and any relevant 
status updates. 

5. SAR processing: 
a. User Action: Navigate to the SAR page and upload the file of the 

created .scan file. Set the max depth of the desired observance 
level and the step size. Lastly, click “Calculate SAR.” 

b. System Response: Once clicked, the system runs a Synthetic 
Aperture Radar (SAR) algorithm on the specified data to process 
and create 2D slices of the object, starting at 0 and goin down to 
the z depth specified by increments of the step size specified. 

6. Viewing and Saving Results 
a. User Action: the user reviews the processed 2D map or image on 

the web application. The user can scroll down through the 
different layers of the data using the slider bar. 

b. System Response: the system displays the final 2D data.  
7. Error Handling/Feedback 

a. User Action: causing potential error 
b. System Response: the interface will display an alert message. 

Logs are stored on the backend for troubleshooting 
8. File Saving 

a. User Action: User clicks download button 
b. System Response: downloads most recent scan 

4.3.4. Areas of Concern and Development  

Our current design provides the basic functionality of a 3D scanning platform 
with millimeter-wave imaging capabilities. It meets the key requirements of a 
scanning volume of 300 x 300 x 300 mm and a user-friendly web-based 
interface. These features align well with the goal of delivering high-quality 
scans with ease of use for non-technical users. 

While we are confident in the functionality and general design, we have some 
concerns. One concern regards the timing of the actual scan. Achieving a 
scan in a short period of time compared to the already existing scanners is a 
potential challenge. One other concern is about the complexity of the user 
interface. Although the web-based interface is intended to be user-friendly, 
ensuring that all users can operate it smoothly will require testing and may 
cause more of a challenge than expected. 
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Another concern is ensuring that scanner movement stays within defined 
bounds. Since the scanner operates using G-code instructions, improper or 
unchecked commands could result in movement beyond the physical limits 
of the frame, risking damage to the sensor head or mechanical components. 
Implementing reliable bounds checking in both firmware and software, and 
ensuring accurate homing behavior, is essential to maintain positional safety 
and repeatability. 

Regarding the time requirement, one possible plan could be to experiment 
with the SAR processing algorithm or implement an adaptive scan that could 
reduce scan time as well. Regarding the user interface, to ensure that we 
create a user-friendly one, we can conduct usability tests with a sample group 
of users and collect feedback. 

4.4. TECHNOLOGY CONSIDERATIONS 

We have implemented a number of different technologies to bring the 
MAVinator to life.  

● Voron Motion System 

The Voron motion system comes from a cannibalized Voron printer kit 
ordered specifically for this project. Voron’s open-source licensing, 
modability, and large community make it an ideal technology to 
implement into our design. The alternative option would be to buy a 
three-axis motion stage/platform. While this would require a lot less 
assembly it would be exorbitantly expensive [1], hard to modify, and still 
require some setup physically or digitally.  

Other alternative options within the Voron family include any other 
version of Voron printer as the motion system. We selected Voron 2.4 
with the core XYZ (floating gantry) due to the client's request and we 
agreed due to its higher theoretical top speed, availability of an 
example, and popularity. 

Within the Voron 2.4 motion system that we are using we could have 
selected other end-stops than the limit switches currently 
implemented. The alternatives there are using Hall effect sensors, or 
going for a sensorless homing process. We have shied away from doing 
so in the first phase of the design due to the complexity hall effect 
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sensors would add, because of the risks involved in sensorless homing, 
and because we have access to all of the limit switches that we need. 

● 3D Printed Housing 

The Housing being 3D printed offers up a number of options for 
iterations and prototyping. The alternative in this case would be to have 
housing manufactured by a company such as PCBway through a more 
traditional method like CNC. While sending the designs off to have 
them manufactured could result in parts with higher durability the time 
trade-off is too severe. With 3D printing we can have a part made of 
PETG in a matter of hours or a day at most resulting in a much faster 
and more satisfying prototyping process. Additionally using a material 
like PETG or ABS can result in a part with more than enough strength. 

● In-House Sensor Board 

The sensor and radar boards created in-house offer many advantages 
over other alternatives. They were designed specifically for the purpose 
of making millimeter wave scans. These boards have still required the 
soldering of all the surface mount and through hole components. The 
radar board is the more complicated of the two and is the one that 
creates the millimeter wave signal. Much testing has to be done in 
order to ensure that the board functions correctly as the main driver in 
the sensor. The second board contains the antenna and a biasing 
network to send out the signal generated by the radar board and then 
capture the return signal to be processed. The frequency sweep is set 
up to be triggered by a digital signal from the FTDI cable. 

Having the boards designed in-house gives us great access for any 
questions or concerns we have about the operation of the boards. 
Several of the workers at the lab have experience with testing and 
issues associated with them so we will be able to use their expertise to 
help us diagnose issues along the way.  

● FTDI cable 
 
The FTDI cable is basically a usb to digital pin-out adapter. We utilize 
this to program the registers that tell the sensor what frequencies to 
sweep over and other KWARG(see gitlab) based parameters. Last 
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minute we also switched from using the National Instrument to trigger 
the radar sweep to using one of the FTDI cables 3v digital I/O pin. In 
order to ensure the sweep is triggered at the same time as the 
measurement Luke made a spliced cable that took that signal and 
branched off two ways to the DAQ and radar. This is plugged into the Pi. 
 

● Digilent Analog Discovery 2 (USB oscilloscope) 
 
The Digilent Analog Discovery 2 (AD2) was a last minute consideration, 
but a very necessary one. This little device packs a lot of functionality in 
a small form factor. We utilized its python SDK after familiarizing 
ourselves with the WaveForms software user interface. The wide range 
of functionality made it a little trickier to figure out how exactly to 
configure the device as a DAQ for our purposes. We hardwired one of 
the digital I/O pins on the AD2 to listen for a trigger that comes from 
the FTDI cable. This starts our preconfigured recording process until the 
buffer is filled up at which time we reap the data. 
 

● Flask python webserver 
 
In the MAVinator project, Flask serves as the backbone of our 
web-based user interface. We've implemented Flask on the Raspberry 
Pi to act as a server, managing communication between the frontend 
web application and the underlying hardware control system. Flask 
handles all requests from the user interface. Such as movement 
commands, and translates them into G-code instructions for the 
Octopus MCU. In the case of a scan it manages the thread that 
generates the g-code and triggers the radar system at each point. 
 
Furthermore, Flask handles the processes for scan data, saves it to files, 
and triggers SAR processing algorithms. It also facilitates real-time 
updates to the user interface through websockets, providing live 
feedback on scanner status and position. Essentially, Flask acts as a 
nervous system, orchestrating user interactions, hardware control, and 
data processing within our MAVinator system.  
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5. Testing 
5.1. UNIT TESTING 

The MAVinator is composed of two main physical parts that need to undergo 
testing: the Voron itself and the two circuit boards. The following sections will 
discuss the testing of each component. After the completion of the previous 
circuit board assembly we had to swap to a new radar which was tested for us 
and is verified as satisfactory. In the second half of our project we focused 
most of our testing on the code we created. 

5.1.1. Voron Build 

The Voron based portion of the scanner requires testing, and will occur in 
three primary phases: Electronics smoke test, Basic motion testing, and 
Advanced Motion testing. This phased testing will help to mitigate some risks, 
risks of electronic component failure, risk of mechanical damage to motion 
system components due to “dumb” motion, and risk of damage to the 
millimeter wavelength sensor.  

The first test upon completed construction consists of powering on the 
printer with protection, our smoke test if you will. While the scanner is 
plugged into a surge protector that has protection for shorts we will turn on 
the power switch and inspect the printer with power on for 1 minute or until 
we see something of concern. If there is a short due to component failure, the 
surge strip should trigger and prevent catastrophic failure. 

With a successful smoke test we begin the testing of the functionality of the 
motion system with simple movements. After powering on, using a provided 
test script we will ensure that the gauntry shuttle can move in the X, Y, and Z 
directions both positive and negative. This test will not test the outer or inner 
bounds, just short movements in all directions. If the distances, and directions 
are correct and as expected then we will move onto the final. 

Lastly there is the advanced motion test. This test consists of implementing 
automated paths and making sure they operate as intended. The automation 
that will be tested is “homing” the gauntry shuttle. In this motion the shuttle 
is moved to X = 0, Y = 0, and Z = 350 with each motion ending when the 
shuttle triggers an end stop. The first position moved to should be the X, then 

60 



the Y, and then the Z in order to properly trigger the third end stop. With that 
test successful and positional accuracy established, we are ready to attach the 
sensor. 

5.1.2. Circuit Boards 

The circuit boards required extensive testing as there are several 
opportunities for errors to occur in the soldering process. Resistors or 
capacitors could stand up in the reflow oven, integrated circuits could be 
placed with the wrong orientation, or components could be shorted to 
ground. Testing began with the more populated board which will henceforth 
be referred to as the control board. The second board will be called the radar 
board. 

Testing of the control board began by visual inspection after soldering. 
Immediately a couple of components were discovered that were not soldered 
down correctly. The second step of the testing phase was ensuring that 
nothing was connected to ground that wasn’t supposed to be. This is done by 
using a multimeter and tapping soldering connections along the board to 
check if they are grounded. Again, several connection points were discovered 
to be incorrectly soldered. Those points were fixed, and testing continued 
with path tracing. Path tracing involves following connected paths from the 
power source back to where the power is needed to make sure there are no 
breaks in the path. This test showed no issues and we moved on to the next 
major test: connecting the control board to power.  

The main purpose of this test is to check if the correct voltages are showing 
up at every node. The board was tested using an FTDI cable to supply the 
voltage. This test raised a flag which meant that something was awry. After 
doing several tests with the integrated circuits and shift registers, then taking 
them off completely and the error remained. This showed that the issue was 
not related to those components. After some more investigation, we 
discovered that the oscillator on the power board was shorted, but it was 
covered up by a jumper wire not included in the original design which is why 
it was originally overlooked. Once we took the oscillator off, cleaned up the 
solder, and placed it back on the board, the power was much closer to 
accurate, and we moved on to the radar board.  
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The radar board was much more simple to test as there are much less 
components. The same tests were done on this board as on the control board. 
The test for shorts came up with a few issues, but those were solved and no 
other problems were detected. 

We followed up with testing the two boards when placed together. When 
checking the voltage levels at critical nodes, we noticed a lower voltage level 
than expected, but continued to try and program the PLL on the board using 
the FTDI cable. We discovered the board was not beginning programmed so 
we traced each critical signal from the FTDI cable to the PLL using a 
picoscope and discovered through this that a resistor was not fully soldered 
and the PLL got rotated the second time we were putting it on the board so 
the pins were misaligned. After fixing these two issues, the board passed all of 
the tests needed before we attach it to a DAQ and observe the output.  

The final test was to ensure proper functionality. We attached the IF_Q+, IF_Q-. 
IF_I+, and IF_I- cables to the control board and set up the PCB system on a 
scanner which allows us to read the data. The scanner in this test will be 
replaced by the Voron in the final product. A piece of foam was scanned with 
nine rubber plugs located at different depths throughout the foam. The data 
was then filtered and had synthetic aperture radar(SAR) applied to it which 
created two and three-dimensional images and those images came back 
great, which means the PCB system is ready to be attached to the Voron. 
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5.2. INTERFACE TESTING 

This section will outline the testing procedures for user-entered parameters, 
including inputting unexpected, excessive, and mismatched data. 
Additionally, it will detail regular use case testing, which has revealed that 
frontend data does not persist on page change. This section will also cover 
the testing of SAR algorithms using established scan files and their 
comparison to a MATLAB script implementation. 

 5.2.1. Backend API Testing 

G-code testing 

● Boundary Testing:  
○ Ensuring that movement commands (G0/G1) respect the defined 

limits of the scanner's x and y axes and does not attempt to move 
beyond them, preventing physical damage. This was done by 
using Pronterface to issue g-code that exceeds known bounds 
directly. The power switch on the back of the scanner served as 
an emergency stop. 

● Z-Axis Safety:  
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○ Implementing and testing restrictions on Z-axis movement to 
prevent the sensor head from colliding with the scanned object 
or the base, incorporating both software and hardware (limit 
switch) checks. This was tested after we had the UI implemented, 
ensuring both the scan and motion controls wouldn’t go below 
our defined threshold of 100mm with the new sensor. 

● Homing Accuracy:  
○ Verifying that the G28 homing command consistently and 

accurately returns the scanner head to its designated home 
position, ensuring reliable positional reference for scans. This was 
done using the initial Pronterface testing to issue a G28 over a 
serial connection. 

● Scan Pattern Validation:  
○ Testing the custom G-code sequences that define scan patterns 

(e.g., grid movement, data acquisition pauses) to confirm they 
execute as intended and produce the desired scanning behavior. 
This was tested after the backend was more developed, using 
NCview G-code simulator. 

● Digital I/O Synchronization:  
○ Thoroughly testing the digital input/output signals used to trigger 

scans and synchronize the scanner's movement with the radar 
hardware, ensuring seamless data acquisition during scans. This 
was tested after the swap to the new radar and the backend was 
almost completely developed. To test we ran scans and ensured 
that the data readings were occurring within the allocated pause 
between each movement, printing to the console  when a sample 
ended and then when the pause ended. 

SAR 

● Data Extraction: 
○ Testing to ensure the data is imported in the correct manner and 

that the array sizes of the data are correct. Also testing to verify 
that the real and imaginary pairs get placed together properly. 

● Data Processing Comparison: 
○ Verifying that the data processing scripts result in the same data 

as the MATLAB processing scripts currently used by the CNDE to 
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perform SAR calculations. Also need to confirm that the arrays are 
returned with the correct dimensions. 

● Data Heatmap Plotting: 
○ Test the plotting feature to ensure that the data is being plotted 

on the correct axis with the correct magnitude, and verify those 
results using the pre-existing MATLAB scripts. 

○ We also tested to ensure that the slider bar allows proper scrolling 
through the slices of the scan, taking the correct step sizes, and 
not taking too long to update the interface. 

DAQ Testing 

● Waveforms GUI and Data Comparison  
○ The AD2 was initially connected to a laptop and controlled using 

the Waveforms GUI. Data was collected and compared against 
recent scans from the previous DAQ to ensure data consistency 
and quality. This visual comparison allowed us to quickly see that  
half of the buffer was empty at that trigger position. This resulted 
in half of our sample being lost due to the default trigger position 
being set to start with the buffer half full already. 

● Object Manipulation and Sample Rate Verification 
○  To verify the sample rate and overall responsiveness of the AD2, 

we placed various objects in front of the sensor and manipulated 
them while observing the real-time data stream in the 
Waveforms GUI. This dynamic testing helped us confirm that the 
AD2 was capturing data at the expected rate and accurately 
reflecting changes in the environment. 

● Integration with Backend and Firmware  
○ Once initial testing in the Waveforms GUI was complete, we 

integrated the AD2 with the Raspberry Pi backend. This involved 
writing custom Python scripts to control the AD2's settings and 
trigger data acquisition in sync with the scanner's movements. 
Thorough testing was conducted to ensure seamless 
communication and data transfer between all components. 
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 5.2.2. User Interface Testing  

The web-based user interface was built using HTML, CSS and JavaScript and 
tested iteratively through development. Testing focused on usability, 
responsiveness , communication with the backend and visual clarity 

● HTML  
○ verified structural layout and element accessibility across 

browsers  
○ ensured all forms, buttons and input fields rendered properly and 

were mapped to functional javascript actions 
● STYLING (CSS) 

○ Ensured responsiveness using flexbox/grid layouts and checked 
for any layout breaking under user interaction. 

○ Confirmed color themes matched CNDE's aesthetic preferences 
and were accessible for low-vision users. 

● JAVASCRIPT (connection to backend) 
○ Ensured all frontend buttons triggered the correct HTTP POST or 

WebSocket events. 
○ Tested error handling (e.g., empty input fields, out-of-bounds 

values) and validated feedback to the user. 

5.2.3. Hardware Interface Testing 

DAQ Hardware interface 

The DAQ hardware interface did not require much testing as much of it is very 
much lab ready but not field ready. The connections were tested to make sure 
they had continuity and were taped to ensure minimal interference. The DAQ 
hardware itself was tested by comparing its output signal to a known input 
signal using WaveForms SDK. 

Radar hardware interface 

The hardware interface required a longer, less involved test duration to ensure 
durability of the print. This particular print had a lot of internal stresses that 
resulted in some prints breaking themselves once cooled. Additionally we test 
for alignment by comparing the final connection points to the PCB it will 
mount. 
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5.3. INTEGRATION TESTING 

Initially, we conducted integration testing by issuing serial G-code commands 
from the raspberry Pi to the marlin based control board, ensuring that the 
integration of the two did not break either. This then allowed us to confidently 
test the integration of the hardware mount for the sensor with the Voron 
motion system, ensuring that neither impeded the function of either. We 
then repeated these initial tests with the new sensor mount for the new 
sensor. Following the initial tests, we proceeded with comprehensive testing 
of the new sensor integrated with the new DAQ. During his phase performing 
complete scans of various objects and comparing the results to known good 
scans of the same subjects verifies the successful integration. This 
comparative analysis will enable us to assess the accuracy and reliability of the 
new sensor, ensuring that it meets the required standards for 
millimeter-wave imaging. 

By conducting thorough testing and validation at each stage of development, 
we aim to ensure that the MAVinator delivers accurate and reliable 3D 
scanning results, meeting the needs of our users and providing a valuable 
tool for millimeter-wave imaging applications. 

5.4. SYSTEM TESTING 

System testing encompases using the system as a user would from start to 
finish. The system’s web interface should be able to easily navigate to all the 
control tabs; move, scan, and SAR. The controls available on each page should 
be immediately apparent. The system should be connected to the backend 
websockets immediately on each page. Critically, the system will be able to 
run a scan with minimal interaction. This includes moving the sensor head to 
initial position, and then pausing, sampling, moving and repeating. When this 
completes a standard .scan file is saved to the system upon success. This scan 
file can then be downloaded and uploaded to the SAR page for image 
generation. The SAR image is then easy to navigate through the layers of. 
Throughout all of this the user should be notified of errors but they should not 
impede the operation of the system overall. 
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5.5. REGRESSION TESTING 

Regression testing started once we started work on the firmware which 
occurred at the start of the second semester. Constant regression testing 
ensures that new code changes don't break existing functionality. Initially 
performing tests on the printer to ensure that our modifications to the 
firmware did not reduce functionality or reliability. More typically, post-merge 
testing after we started writing the Flask code was crucial to catch integration 
issues early. This was to prevent unexpected problems due to dependencies, 
conflicts, or other differences. These post-merge issues are often addressed 
with small, targeted code changes like bug fixes, configuration adjustments, 
and dependency updates. 

5.6. ACCEPTANCE TESTING 

The design requirements we were presented with include having a motion 
volume of 300mm x 300mm x 300mm or larger, an accuracy of 0.5 mm, a 
graphical user interface, the ability to perform a scan on a uniform cartesian 
grid,  process the data using the SAR algorithm, and display the results. To 
ensure our product met all of these requirements, we gave our product to our 
client, Dr. Tayeb, and let him analyze it. He mentioned that we have created 
the minimal viable product that can now be pivoted to the exact desire of the 
users, which is exactly how Apply phones started. 

5.7. USER TESTING 

We have managed to test once with our primary user, Dr. Tayeb. Though we 
have not done all the tests that we would like we did get a number of them 
with one user. We asked Dr. Tayeb to move the printer as he desired using the 
available movement commands on the move page. The user was asked to 
home the printer and then navigate to the scan and SAR pages. We followed 
up the navigation test with a scan test in which our user confirmed our 
readings looked good. We would like to have the user save a .scan file and 
reupload it for SAR processing. The last test performed was a test of the SAR 
processing using a known good scan, asking Dr. Tayeb to navigate through 
layers of the SAR image. 
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5.8. RESULTS 

5.8.1. First PCB 

The following results came from the PCB testing. These results come from a 
scan of a piece of foam with nine rubber plugs dispersed at three different 
levels within. The plugs can be clearly seen in the images which was the 
desired outcome. This testing was done with our original PCB, but we were 
required to change the PCB used for the final product due to extenuating 
circumstances. 
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5.8.2. SAR Processing 

To verify the results of the SAR processing of our web application, the results 
were compared to the accepted results of the MATLAB program created by 
Matthew Dvorsky. As can be seen in Fig. (5.8.2.-1) and Fig. (5.8.2.-2), the results 
are extremely similar, and the defect can be clearly seen in the center of both 
images. The difference between the two is the scaling of the axis. The 
MATLAB has interactive scaling where the x and y axis can change total 
length whereas the web application always displays the SAR results in a 
square plot. 
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5.8.3. DAQ 

When we replaced the DAQ we needed to test the measurement processes 
we configured the DAQ for. We did this by comparing the data received to 
that of known working radar output using our real time data visualization. 
From these results we saw the expected curves, in the images the surface 
measured is different. 
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5.8.4. System Testing (scanning) 

These tests, while not complete, informed us of the basic next steps and 
shortcomings we face. We conducted the simplest scan possible, a 20x20mm 
scan using default radar parameters. This gave us very good results as 
everything performed as expected. The next tests will consist of non-square 
test grids in both directions, higher resolution scans, and taking a higher 
resolution scan of control objects that have known good and easily 
interpretable scans. 
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5.8.5. User Testing 

We had two users, Dr. Tayeb and Matthew Dvorsky, test the MAVinator. The 
MAVinator performed adequately, but both of them gave us valuable 
criticisms. The most impactful criticism came from Matt, we should make our 
scans start relative to the position of the sensor head, not centered on the bed 
every time. Matt also noted that it would be more useful to have our Go-To 
function automatically enter the sensor’s current location so that you can just 
modify one of the three coordinates. Dr. Tayeb also noted that the SAR page 
should give the user the option to adjust the Z-step size without re-uploading 
the file. On the same page for SAR processing he theorized that we should be 
able to pull the max Z-depth out from the .scan file information. With these 
results sdmay15 can move forward confident that our next changes will bring 
us closer to the desired finished product. There is still much user and 
acceptance testing needing to be performed.  
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6. Implementation 
The implementation of the complete product was done over two semesters 
and broken into two main stages, with the first being hardware and done over 
the course of the first semester and the second being the software and being 
done over the course of the second semester 

The implementation of the build of all the “hardware” has been completed in 
four different stages: mechanical assembly, electronics integration, sensor 
and housing, and end stops. 

The implementation of the build of all the “software” has been completed in 
five different stages: HTML requests, websockets, G-code generation, SAR 
processing, and DAQ and Radar Classes. 

 While Section 4. Design provides an in-depth look at the technical details, 
this section offers an overview of the work completed this semester. 

6.1 HARDWARE 

6.1.1 Mechanical Assembly 

Thus far, the majority of the mechanical assembly for the MAVinator scanner 
has been completed. We began by constructing the frame using a Voron 
2.4R2 printer kit as our foundation. This open-source motion platform 
provided a base. Following the Voron build guide, we first assembled the 
frame, ensuring that it was square. The gantry system, composed of linear 
rails, belts, idlers, and stepper motors, was then integrated to enable precise 
three-axis (X, Y, and Z) movement. The mechanical assembly now closely 
resembles a high-precision 3D printer, but repurposed for millimeter-wave 
scanning. 

During this assembly phase, we focused heavily on proper alignment and 
tensioning. The drive belts were carefully tensioned to ensure smooth, 
backlash-free travel, and linear rails were checked for parallelism to meet our 
0.5 mm positional accuracy requirement. Although this process involved 
significant iteration—tightening, loosening, realigning—we have achieved a 
stable, rigid motion platform capable of consistent, repeatable movement. 
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6.1.2. Electronics Integration 

Following the mechanical build, we began integrating the electronic 
components. We mounted the main controller board (Octopus MCU), power 
supply, stepper drivers, and Raspberry Pi onto a lower deck beneath the 
scanning platform. Each stepper motor has been wired into the motor drivers, 
and initial continuity checks have confirmed that all wiring connections are 
correct and secure. 

Before adding sensors and end stops, we ran a basic power-up test to verify 
the correct voltage outputs from the power supply and confirm that the 
controller board powered up without issue. Preliminary tests show that the 
motors can be energized and that no electrical shorts or grounding issues 
were present. 

6.1.3. Sensor and Housing 

After completing the soldering and testing of the PCBs, we began to 
implement it into the Voron. This required us to design a housing for the 
sensor (PCBs put together) that would fix it to the Voron extruder. We used an 
existing design for the housing as a base template for our design. 
Modifications were necessary to attach it to the pre-existing mount on the 
Voron and to hold the radar part of the scanner more firmly in place as it will 
experience some vibrations as it moves around the scanning platform.  

6.1.4. End Stops 

The Voron kit we were supplied with did not come with the necessary end 
stop parts to ensure that the extruder would not travel too far in any direction. 
The Voron step file model contained many different mount versions, so we 
simply selected the right one, then printed our own pieces. The kit did come 
with the Y and Y end stops but the wires were too short for our 
implementation so we redid those to make them the needed length and 
routed them to the mount we printed. 

The Z-axis end stop did not come with the kit. The CNDE lab had two more 
already assembled Voron printers that were no longer using their Z-axis end 
stops so we were able to salvage one of those end stops for our purposes. 
Typically this end stop is located at the bottom of the printer, but for our 
application, we needed it at the top. It is not designed for that, though, so we 
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created another 3D printed part that would hit the end stop when the 
extruder travelled all the way to the top of the Voron frame in the home 
position.  

6.2. SOFTWARE 

6.2.1. HTML Requests 

HTML requests serve as a bridge between the frontend and the backend. 
When a user clicks a button (e.g., "Start Scan", "Move Axis", or "Home"), the 
HTML element (button) is connected to a corresponding JavaScript function. 
This JavaScript function triggers an HTTP request to the backend, typically 
using the fetch API with a .text or .json response type, depending on the 
desired format.  Once the backend receives the request, it routes the request 
to an appropriate function, which processes the request based on the 
functionality specified (e.g., starting a scan, moving an axis, or homing). The 
backend then communicates with the motion controller, sending the 
corresponding G-code to perform the requested operation. 

6.2.2. Websockets 

Websockets are used lightly in the design of the backend, primarily for scans 
and data processing. Flask-socketio is used to send initial connection 
messages, disconnect messages, live errors as they happen, and scan status 
information. When a start scan message is broadcast the backend websocket 
listener starts a new thread to generate the g-code and starts sending the 
commands via serial. Scan started is broadcast back over the websocket 
connection as well as an eventual scan completed message. These along with 
other error messages broadcast via websockets are displayed in the status 
box visible on all pages. We had an implementation of live websocket position 
updates but this was not as efficient as keeping track of the position with 
each movement command. 

6.2.3. Gcode Generation 

The G-code generation for scanning is done significantly differently from 
G-code generated for movement commands. Movement commands are hard 
coded with a preceding relative move mode command, G91. This is then 
followed by a hard coded G0 command with the delta relative to the 
scanner’s current position. Alternatively this is done with a G0 command 
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directly for go-to-position style movement commands. For both operations 
the sensor location is updated with each movement. 

In the backend the pattern G-code generation is handled in a somewhat 
modular manner. This modularity could be enhanced with a base python 
class that other scan pattern classes would overwrite. In our case it is simply 
handled within a function that is broken off into its own file. This function 
takes in the object dimensions, step sizes, and z-height, then generates a 
snake-wise pattern starting from the front right corner of the scan plate. 
When the dimensions are entered in the front end they are verified as easily 
divisible by the step sizes or not and the user is given options to automatically 
correct the discrepancy. Once the pattern is generated it is stored in a python 
list of G-code commands then each one is processed and the sensor location 
is updated. 

6.2.4 Scan File Saving 

Scan file saving is done by saving operational data as well as measured data 
at each scan point.  The operational data includes the frequency range that 
the scanner is scanning each point at.  These values are stored in an array that 
is cleared and then populated each time a scan is initiated by pulling it from 
the sensor itself.  The frequency range only needed to be calculated once per 
scan and not at each point like the other data.  The other operational data 
that is taken at each scan point is the coordinates that the scan took place at, 
so the X, Y, and Z coordinates.  Each iteration would store an array of the 
coordinates to another array for processing later.  Lastly, the measured data 
coming out of the radar needed to be stored in an array as well to correspond 
with each coordinate stored.  After a scan is complete and the data is stored in 
their respective arrays, they are passed to the export_scan function to be 
exported into a .scan file.  The export_scan function takes the filename given 
by the user in the scan page, the coordinate points, the measured data points, 
as well as the frequency range used by the radar to generate the .scan file.  
The export_scan function was derived from a given matlab script that we 
converted to python for use in our scanner. 

6.2.5. SAR Processing 

The purpose of the SAR processing is to return images of the collected data 
that is capable for a human to visually analyze. It takes the returned 
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S-parameters, turns the data into the time domain, and returns the 
magnitude at each data point taken. For this project, we were provided with 
working MATLAB code that needed to be converted to python code to use in 
the web application. Five total files needed to be translated: a file to import 
the data, a file to perform 2D processing on the data, one to perform 3D 
processing, one to create 3D SAR data in case you have bistatic separation, 
and one to calculate the gaussian of the antenna. For the current 
implementation of our project, only the scan importing and 3D processing 
are necessary, but the others were also translated in case of future work. 

Import Scan 

The import scan file takes an input of a .scan file and returns the x, y, 
frequencies, data, and the header. The imported file has all of the real and 
imaginary data separated in one long list, so it is necessary to group the pairs 
back together. That data then needs to be assigned to their respective x and y 
coordinates. This proved more difficult than expected because the ‘reshape’ 
function in MATLAB does not work the same as the ‘reshape’ function in the 
NumPy library. This made it necessary to manually assign the data to the 
correct coordinate pairs. After that is complete, the data is transposed to the 
correct dimensions.  

SAR Processing 3D 

This file does all of the necessary processing on the data to make it easily 
understandable by the user. It can take several arguments, with the necessary 
ones being the data, x, y, and z coordinates, and frequency coordinates, and 
the unnecessary but more commonly used ones being the zero pad percent 
and the option of removing averaging. Some initial preprocessing is done on 
the data to apply the zero padding and calculating the wavenumber.  

The data with the zero padding applied then has 2-dimensional Fast Fourier 
Transform (FFT) applied to it to turn it into time domain data. This allows us to 
‘look into’ the material being scanned by knowing how long it took the wave 
to reflect back to the antenna. That data is then divided by the wavenumber. 
Next, the data is mapped to the z-depth values. Some more data processing is 
done to get the image to appear correctly, and finally the inverse FFT is 
calculated to finalize the plotting of the data. 
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6.2.6 DAQ and Radar Classes 

The DAQ and Radar classes, much like the g-code pattern generation, were 
designed in a somewhat modular manner. Writing these in a more modular 
fashion with parent classes that could be implemented or overwritten would 
have aided this project when it came time to switch DAQ’s and sensors. 
Regardless, our implementation was done through direct addition of classes 
(ADF and Simulated) to the Radar class and adding functionality to the 
DAQ/FTDI classes to support a Digilent DAQ’s software development kit. 

The switching of the radar itself did not impose many changes, but the 
switching of the DAQ did actually require a number of tricks. The first trick to 
using the Digilent Waveforms SDK was having its specific dll library installed 
on the Pi. The second was setting the digital I/O 1 pin to be a trigger in order 
to ensure timing accuracy regardless of computer constraints. Lastly the third 
trick was moving the trigger position to be half of the sample count 
multiplied by the sample rate. 

 

6.3. DESIGN ANALYSIS 

Our implemented design works to the standard that we were given. We can 
successfully move the sensor through the use of the web application. The 
tracking of the sensor head through sliders works well, but the speed does 
not directly match. We have proven that we can run a scan that collects 
accurate data using the new sensor we received and DAQ. We are then able 
to save that data in a .scan file to the user’s device. That .scan file can then be 
uploaded to the web application and have SAR processing performed on the 
data to a specified depth with a given step size. That data is then plotted in a 
heatmap image that the user can visually decipher. The web application also 
has a more modern appearance which was desired by our client. This all 
works because we set out with a definitive goal in mind, and worked 
diligently until we got the results we were looking for. 

One part that does not work quite as well as expected is the SAR image 
displays an entirely green heatmap at a depth of 0, which is not expected. 
Fortunately, that data is not used as the sensor is never positioned directly on 
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top of the material being scanned so this is not a major issue. All of the other 
data is plotted correctly.  

Another shortcoming we noticed in our design was that when each page is 
refreshed the data entered is lost. This is not a major problem as most are 
simple values, though for repeated activities over a longer work session may 
get repetitive. 
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7. Ethics and Professional 
Responsibility 
In designing and developing the MAVinator scanner, our team recognizes 
that engineering ethics and professional responsibility extend beyond 
technical correctness. Ethical conduct involves considering how our work 
affects users, the environment, society, and compliance with professional 
standards. We aim to uphold the highest ethical principles, ensuring safe, 
beneficial, and equitable outcomes. 

7.1. AREAS OF PROFESSIONAL RESPONSIBILITY/CODES OF ETHICS 

Area of 
responsibility 

Definition IEEE Team interaction 

Willingness to 
learn and 
improve 

Having an open 
mind and active 
desire to gain 
new knowledge 
and skills, 
constantly 
seeking ways to 
enhance your 
performance or 
abilities in any 
given situation 

To seek, accept, 
and offer honest 
criticism of 
technical work, to 
acknowledge 
and correct 
errors, to be 
honest and 
realistic in stating 
claims or 
estimates based 
on available data, 
and to credit 
properly the 
contributions of 
others; 

The team has 
constantly 
sought out 
feedback 
internally, from 
our advisor, and 
at certain points 
from external 
sources as well. 
Always giving 
great care to the 
feedback 
received and 
finding ways to 
take it into 
account. 

 

7.1.1. Area in Which the Team is Performing Well: 

One area in which we are doing well is communication honesty. This is 
defined as Perform work of high quality, integrity, timeliness, and professional 
competence. The team has had honest and transparent communication with 
each other and has assisted in high quality work. By maintaining open lines of 
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communication with our mentor, we can acknowledge when we are behind 
schedule and also actively seek feedback on any issues we have. This 
approach enables us to meet professional standards in timeliness, 
competence, and overall project integrity 

7.1.2. Area in Which the Team Needs to Improve: 

While our technical progress and open-source platform help with cost 
benefits, we recognize that we need to improve our financial responsibility to 
ensure that the final product remains valuable and cost-effective. Some 
high-priced electronic components can cause a challenge to budget 
constraints. An approach to improve this area is to consider more thorough 
cost-benefit analyses, engage in market research, and explore more 
resource-efficient designs. 

7.2. FOUR PRINCIPLES 

Below is a table connecting four ethical principles—beneficence, 
nonmaleficence, respect for autonomy, and justice—to broader context areas. 
We assume these broader context areas include: Public health, safety, and 
welfare; Global, cultural, and social; Environmental and Economic 
considerations 
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7.2.1. Four Principles Table 

 

7.2.2. Broader Context-Principle Pair 

Our design strongly meets the pairing of Economic Respect of Autonomy. 
Going so far as to make the project Open Source with python as the 
predominant language in use for our software interface. Conversely we are 
lacking in Global social and cultural respect for autonomy because we have 
not yet researched any ways of making our software more accessible to 
non-english speakers. 

7.3 VIRTUES 

7.3.1. Team Virtues 

Integrity: Being honest and transparent in communication, test reporting, 
and documentation. We have consistently provided truthful updates to our 
advisor and documented both successes and challenges. 
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Responsibility: Owning our tasks and deadlines, ensuring that everyone 
completes their work on time and at a high standard. We create shared 
timelines and check in regularly to ensure accountability. 

Collaboration: Supporting one another by sharing knowledge, assisting with 
complex tasks, and respecting each other’s expertise. We hold weekly 
meetings to discuss progress, solve problems collectively, and ensure no 
member is left struggling in isolation. 

7.3.2. Individual Virtues 

Nathan Reff 

● Demonstrated Virtue: 
○ Through our senior design work, I believe I have demonstrated 

strong collaboration skills, particularly through the work in the lab 
sessions with Daniel. Whenever we met to work on the scanner, 
we would delegate tasks properly. For example, if one of us was 
focusing on aligning and tensioning the gantry belts, the other 
would handle preparing the necessary tools and components, 
ensuring that our workflow remained smooth and efficient. By 
rotating responsibilities and working cohesively, we were able to 
make substantial progress this semester. 

● Not Yet Demonstrated Virtue: 
○ One virtue I feel I didn’t have the opportunity to demonstrate 

effectively was innovation, particularly in terms of creativity. Most 
of our project this semester was following a guide in building the 
scanner, which left limited room for open-ended problem-solving.  

○ With the design of the user interface, and the more open ended 
requirements I hope to use innovation more. I’ll have more 
freedom to introduce innovative ideas into the GUI’s layout, 
workflows and data presentation techniques 

Luke Post 

● Demonstrated Virtue: 
○ This year I have done a good job demonstrating the virtue of 

commitment to quality. A commitment to quality is important to 
me and this project because without it, our product will not work 
well and it won’t be something that I would be proud to have 
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created. I do not want to put out a product that I am embarrassed 
to put my name on. 

○ I have demonstrated this virtue throughout the assembly of the 
PCBs. They need to be carefully and accurately created to ensure 
a clean output. If we do not have a clean output then our product 
will not function properly. After testing the PCBs, we do see a 
clean output due to the quality of work that was done when 
assembling them.  

● Not Yet Demonstrated Virtue: 
○ I have not done an amazing job demonstrating the virtue of 

having respect for nature. Several times I have used more product 
or materials than I needed because I made a mistake on the first 
attempt. These products come from natural materials that get 
wasted. Our final product will also not give back to the 
environment in any way.  

○ What I need to do to demonstrate this virtue is be more 
considerate of the materials I am using and do things correctly 
the first time so those materials are not wasted.  

Daniel Ripley-Betts 

● Demonstrated Virtue: 
○ A high degree of social awareness and teamwork has been 

demonstrated consistently in this project. There has been a great 
deal of value put on collaboration and efforts for equitable 
teamwork in all the efforts I have put into this project. This has 
paid off in spades and I could not have asked for a better group as 
the effort has been reciprocated. 

● Not Yet Demonstrated Virtue: 
○ I struggled to demonstrate courage at certain moments when we 

faced adversity during the second half of this project. It took a 
very supportive team to keep me motivated when we had to 
make major changes last minute. 

James Peterson 

● Demonstrated Virtue: 
○ This year I have demonstrated the virtue of listening to feedback.  

This is true of feedback from teammates, clients, advisors, etc.  I 
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feel I have effectively taken feedback from others to use it to 
improve upon our project or my understanding of requirements.  
This has been quite useful in creating the right product for our 
client. 

● Not Yet Demonstrated Virtue: 
○ One virtue I believe I can continue to improve on is stepping out 

of my comfort zone.  I have avoided doing things I am not already 
knowledgeable about and leave that to others you are more 
experienced while taking on tasks I am already experienced with 
myself.  Improving this virtue could help not only myself to 
expand my knowledge base but also help the team once I’ve 
learned the task.  
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8. Conclusions 
8.1. SUMMARY OF PROGRESS 

Over the course of this project, we have made substantial progress toward 
building the MAVinator scanner. Our goals were creating a 3D (XYZ) scanning 
platform for millimeter-wave imaging, ensuring an imaging volume of at least 
300 mm x 300 mm x 300 mm, achieving positional accuracy of 0.5 mm, and 
developing a user-friendly Python-based interface. Thus far, we have 
successfully completed the minimum viable product (MVP). Assembling a 
gantry system adapted from the Voron platform. We also completed initial 
electronics integration, set up sensor mounting solutions, imaged Marlin 
firmware onto the MCU. Although we have not fully finished user and systems 
testing we have a very viable product. 

Looking ahead, the best plan of action is to continue the progress we have 
already made. The MAVinator does not require too much more work to be a 
highly polished lab tool suitable for any lab environment. Please see 8.3 Next 
Steps for more details. 

8.2. VALUE PROVIDED 

Our client, Dr. Tayeb, has been wanting a new scanner in the CNDE lab as the 
current scanners are used extremely often, and scans can take long periods of 
time to complete. Our product also does not need a computer specified just 
for it to run as we have made it accessible from the web. This will provide 
more availability for the researchers in the lab to complete scans quickly and 
efficiently. 

Aside from that, we have demonstrated the ability to take a device originally 
intended for 3D printing, and turn it into a scanning system. Our goal for the 
project was to make it open source and plug in style so a user can take off the 
current antenna and replace it with one of their own. All that would be 
necessary would be to put the code in to control the new antenna. We 
received the opportunity to do this when we were required to change 
antennas and DAQs. Now we have both sets of functional code in the project. 

Due to our project scope changing in the last two weeks regarding the 
antenna and DAQ, though, we were not able to test the entire functionality of 
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the scanner or implement everything we desired. However, we believe from 
the testing we have done is sufficient to say that our product works. This 
project has a lot of future work that could be done to make it an even more 
powerful tool for Dr. Tayeb and the CNDE.  

8.3. NEXT STEPS 

8.3.1. SAR 

Our current implementation of SAR has the minimum number of features 
required and still contains a couple of bugs. With more time, these are things 
we would have fixed or implemented to give our user an even better 
experience. 

● Green Heatmap at Layer 0 
○ As of right now, layer 0 of the heatmap image is completely 

green. Some calculation that takes place is causing an error at 
that layer. 

● Depth and Step Size After Calculating SAR 
○ Our client has mentioned to us that he would  like to be able to 

change the depth and step size after calculating SAR, not only 
when the .scan file is uploaded. 

● Rendering a 3D Interactable Plot 
○ We would like to be able to take all of the slices that can be seen 

in the 2D heatmap image and turn them into one plot. 
○ The user should be able to pan, rotate, and zoom in on specific 

parts of the plot 
● Display the Raw Data on a Plot before SAR Calculations  

○ We would like to have the raw data on a heatmap plot as well, 
then have the raw data replaced by the SAR data once the SAR 
calculation is run. 

○ This would also be necessary for the following next steps to 
happen. 

● Perform Extra Manual Processing on the Raw Data 
○ Crop the data to only see a specified x and y range. 
○ Filter the data using high pass, low pass, or any other filters that 

may make the resulting image better. 
○ Be able to apply resampling to the raw data to smooth out some 

of the sharp changes. 
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○ We would like to able to specify what coloring scheme is used on 
the SAR heatmap instead of ‘jet’ being the only choice. 

8.3.2. Modular Classes 

● DAQ and Radar 
○ Writing abstract base classes for both the Radar chip and DAQ 

would have helped us this semester to more easily switch from 
the previous radar to the new one as well as swapping our DAQ. 

○ Each implementation of a radar chip would have its own concrete 
class that implements the interface laid out in the abstract base 
classes for the DAQ’s and Radar respectively. This would allow 
each class’s slight nuances to be swapped when switching 
devices. 

○ This would allow for easy swapping of radars and the DAQ. 
 

● Scan Pattern 
○ Implementing an abstract base class would give more formal 

requirements for developers to create their own scan patterns. 
○ Implementing a concrete class for each different type of pattern 

gives the user more flexibility. Some patterns may include 
fortran-like, circular, and triangular patterns. 

○ This would allow for easier switching of scan patterns down the 
line, potentially from within the UI as well.  

○ There may be potential for scans to occur over the z-axis as well. 

8.3.3. UI 

● The user interface could always stand improvements for our own 
purposes as well as client desires. 

○ Upgrading the javascript libraries we use could enhance the 
overall feel of the user interface. 

○ Implementing more instances of Flask forms may also help with 
data loss on page refreshes. 

○ We would also like to upgrade the positional sliders to move 
accurately with the printer’s given feedrate, displaying the target 
end destination of the sensor at the same time as the current 
position.  
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10. Appendices 
APPENDIX 1 - OPERATIONAL MANUAL 

This section contains descriptions and images of our scanner operations.  It 
will walk through how to operate the scanner and outline key details to 
inform the user of all of its functionality. 

A.1.1. Connecting to the UI 

On startup the pi will load the software to run the server.  So, all you need to 
do after the pi is up and running properly is enter the device's IP address into 
your browser to pull up our web-based UI.  The IP address is dependent upon 
the device and network so you must know this in order to connect to the UI. 

A.1.2. Move Page 

The Move page is the page that you will be greeted by after connecting to the 
server.  This page is used for moving and homing the scanner head (Figure 
A.1.2). 

 

Box 1 is used to move the X, Y, and Z axis with a given value.  Just enter the 
value in the box and click the respective button to move the sensor.  Box 2 will 
display the current sensor location dynamically for the user’s consistent 
awareness of where the sensor is.  Box 3 is for homing the sensor.  There are 
options to home each axis individually or it can home them all at one.  Box 4 
is for entering a position to move the sensor to in one motion.  Simply enter 
the coordinates desired and click go and it moves the sensor there. 
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A.1.3. Scan Page 

The scan page is used to configure and perform scans.  There are a number of 
inputs for this page for the user to provide. 

 

Looking at figure A.1.3-1 to begin, there is an input for the scan file name to be 
saved.  Next are the dimensions of the scan, including the X and Y distances 
to be scanned and the Z height of the object being scanned.  Lastly is the 
step size that the sensor should use during its scan. 

There is also the option to configure the scanner (Figure A.1.3-2).  There are 
default values so this configuration is optional.  To configure the scanner there 
are a few parameters to provide.  These parameters are the number of 
frequency points, start frequency, stop frequency, sweep time, and ramp 
delay. 

 

After clicking the start scan button, real time data from the scanner will be 
displayed on the plot on the screen.  This can be used to ensure the scanner is 
working as expected and to get a general idea of output from the scanner. 
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A.1.4. SAR Page 

The SAR page is for presenting scans in a human understandable format.  It 
takes a .scan file as input to display a 3D representation of the scan results. 

 

The page takes a .scan file as an input, a max z-depth for the SAR to display, as 
well as z step size for the SAR to display Z depths (Figure A.1.4-1). 

After entering these parameters and clicking “upload file”, a ready indicator 
will appear above the Calculate SAR button (Figure A.1.4-2).  This will allow you 
to calculate the 3D SAR display. 

The third section then displays the heatmap of the given .scan file for the user 
to view and understand (Figure A.1.4-3).  The user can use the slider at the 
bottom to display different Z depts of the scan, moving at the step size given 
before. 

A.1.5. Status Box 

The Status Box is located on every page floating in the top right corner.  Here 
you will see messages displayed regarding the operation of the scanner.  
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Additionally, this status box is where you can perform an emergency stop and 
download the most recent .scan file with the respective buttons. 

 

The status box contains a text box to display status messages such as scan 
progress and two buttons to perform an emergency stop and to download 
the most recent .scan file.   

 

This will pop up when an emergency stop is issued to inform the user of a 
required restart.  A status message will be displayed in the status box as well. 
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APPENDIX 2 - ALTERNATIVE/INITIAL VERSION OF DESIGN 

This section details the significant design iterations and changes that 
occurred during the MAVinator project, highlighting the rationale behind 
each adjustment. 

 

A.2.1. Initial Sensor and Radar Setup 

● Description: The initial design involved a specific millimeter-wave 
sensor and associated radar board. This setup was integral to the early 
stages of testing and development. 

● Change: Due to unforeseen circumstances, the original radar was 
required for another project within the CNDE lab. This necessitated a 
switch to a different radar unit. 

● Rationale: The need for the original radar elsewhere was beyond the 
project team's control. The change was unavoidable to ensure the lab's 
overall needs were met. 
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A.2.1.2: Prior PCB Layout 
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A.2.2. Sensor Mount Redesign 

● Description: An initial sensor housing/mount was designed based on 
the dimensions and specifications of the original radar unit. 

● Change: The switch to the new radar required a complete redesign of 
the sensor mount. The new radar had different dimensions, connection 
points, and physical requirements. 

● Rationale: The new mount had to securely hold the new radar, ensure 
proper alignment for scanning, and fit within the existing constraints of 
the Voron motion system. This change was a direct consequence of the 
radar swap. 
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A.2.2.2: Sensor Mount Drawing 
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A.2.3. Codebase Adjustments 

● Description: The initial software development was geared towards 
interfacing with the original sensor and its data acquisition methods. 

● Change: With the new radar and DAQ, significant portions of the 
codebase needed to be rewritten. This included changes to data 
acquisition, signal processing, and control logic. 

● Rationale: The new hardware had different communication protocols, 
data formats, and triggering requirements. The software had to be 
adapted to these new parameters to ensure proper functionality. 

A.2.4. Digital Acquisition (DAQ) Device Swap 

● Description: The project initially planned to use a National Instruments 
(NI) DAQ device for data acquisition. 

● Change: Late in the project, it was discovered that the NI DAQ lacked 
proper Linux support, which was crucial for the Raspberry Pi-based 
control system. The team switched to a Digilent Analog Discovery 2 
(AD2). 

● Rationale: The AD2 provided the necessary Linux support and a Python 
SDK, making it compatible with the project's software architecture. This 
change was essential for ensuring the system could operate as 
intended. 

A.2.5. Early UI Considerations 

● Description: The team considered building off of a previous LabView UI, 
building a UI from scratch, and building a modification for an existing 
library like Octoprint or Klipper. 

● Change: The team decided on building a Web based user interface 
similar to the likes of Klipper using Flask. 

● Rationale: The LabView UI was not user friendly and needed 
improvements, building from scratch was a good option but left some 
unknown variables for the client and unfamiliarity with the current UI. 
Modifying an existing library like Octoprint or Klipper would impose too 
many requirements and dependencies on the project. 
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A.2.6. Impact of Changes 

These changes led to increased development time, unexpected challenges, 
and the need for adaptability. However, they also resulted in a more robust 
and versatile final product. The switch to the AD2, for example, ensured 
compatibility and long-term maintainability. 

APPENDIX 3 - OTHER CONSIDERATIONS 

Quote to describe the project: “Sometimes you can’t see the mountain 
behind the hill you are climbing” 

- Daniel Ripley-Betts 

APPENDIX 4 - CODE 

Github repository: https://git.ece.iastate.edu/sd/sdmay25-15 

All of the code that we worked on is under Luke/FlaskMavinator 

     APPENDIX 5 - ACKNOWLEDGEMENTS 

The MAVinator project would not be where it is today if it were not for a 
collective effort from many people. This section is where our team would like 
to acknowledge some of the direct and indirect contributions of people who 
helped us along the way, and from work others performed in the past. 

 Aaron McCarville - Aaron’s invaluable work on millimeter wavelength 
sensors and its original mounting solution was done before we began. 

Trent Moritz - Trent has helped us at almost every step of the way, whether 
that was access to the build space, 3D printing assistance, testing the sensor, 
or discussing how the scans will actually happen. 

Mat Dvorsky - Mat has helped greatly in the testing, troubleshooting, and 
in his previous works. Without Mat’s SAR code we would have required 
substantially more time to develop our SAR implementation. The entirety of 
the .scan format is also Mat’s creation and our implementation is based on it. 
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Burk Weber - Burk and Trent both work in and around the lab we were 
building in at the CNDE. Burk was instrumental in high quality 3D prints and 
bouncing ideas off of. Good company to be around. 

Dr. Tayeb - While Dr. Tayeb is both our advisor and our client and was 
somewhat pressured to help, our team would still like to acknowledge the 
lessons that Dr. Tayeb shared with us in the process of building the motion 
system. 

Thank you to the above and many more unmentioned heroes who listened to 
our speeches and supported us through late nights of work on our project. 

APPENDIX 6 - TEAM CONTRACT 

A.6.1. Team Members 

● Nathan Reff  
○ Motion System Lead 
○ Computer Engineering 

● Daniel Ripley-Betts 
○ Sensor Mount Lead 
○ Computer Engineering 

● Luke Post 
○ Sensor PCBs Lead 
○ Electrical Engineering 

● James Peterson 
○ Software Design Lead 
○ Computer Engineering 

A.6.2 Required Skill Sets for your Project 

Creating the MAVinator scanner has several necessary skill sets. Without 
these, the product could face design delays and an inefficient product.  

● Electrical Circuit Soldering 
○ This is essential to this product because the PCBs needed to be 

assembled. We received schematics and unpopulated boards for 
both of the PCBs, but they still needed to be accurately soldered 
to ensure proper operation. The end stops needed wire 
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extensions as well which required recreating the wire leads from 
the end stop to the control board. 

● Electrical Circuit Testing 
○ The PCBs have several sources of potential error which need to be 

identified. Proper knowledge on how to test and find errors in 
circuits is essential to the timeliness of the creation of the 
MAVinator.  

● Mechanical Systems Knowledge 
○ The assembly of the Voron scanner required a lot of knowledge 

about mechanical systems. Although the documentation on the 
assembly process is detailed, the assembly kit still has several 
advanced features that need to be properly installed including 
the belt and gantry system and the electronics and wiring.  

● Web Application Development 
○ The MAVinator will be controlled through a web application that 

we will make. Therefore it is crucial that this skill set is covered 
otherwise the MAVinator will not function properly. The GUI for 
this web app also has to be aesthetically pleasing according to 
our client beyond just providing functionality. 

● Software Development 
○ The code controlling the MAVinator that will be sent through the 

use of the web application must be developed by our team as 
well. This will be what sends the gcode commands to the Voron 
printer which is how the printer moves and is therefore vitally 
important.  

● 3D design/modeling 
○ A housing is needed to integrate our PCB system into the Voron 

scanner. To create this we will use 3D modeling software, then 
print it out on a 3D printer.  

A.6.3. Skill Sets covered by the Team 

● Electrical Circuit Soldering 
○ Luke + Daniel 

● Electrical Circuit Testing 
○ Luke 

● Mechanical Systems Knowledge 
○ All 

103 



● Web Application Development 
○ Daniel + Nate + James 

● Software Development 
○ Daniel + Nate + James 

● 3D design/modeling 
○ Daniel 

A.6.4. Project Management Style Adopted by the Team 

We employ a hybrid approach combining elements of both Waterfall and 
Agile methodologies to efficiently manage the MAVinator project. 

A.6.5. Initial Project Management Roles 

In this project we adopted a democratic or participative leadership style 
amongst ourselves. In this management style everyone is considered equal, 
and issues or major changes must be adopted by all group members with 
equal say in the matter. No one group member controlled the project, instead 
we all followed a logical flow according to our individual understandings of 
the project. 

A.6.6. Team Contract 

Team Members: 
1) _James Perterson_________________ 2) _Nate Reff______________________ 
3) _Luke Post______________________ 4) _Daniel Ripley-Betts______________ 

 
Team Procedures 
 

1. Day, time, and location for regular team meetings: 

❖ We will meet Friday at the university library from 

2:30pm-3:00pm 

2. Preferred method of communication updates, reminders, 

issues, and scheduling: 

❖ Communication will occur via Discord: 

https://discord.gg/jzKjzVqc  

3. Decision-making policy: 
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❖ Final decisions will be made with majority rule + Rock 
Paper Scissors & Tayeb for ties 

4. Procedures for record keeping: 

❖ We will make use of Google Drive, Git, and Discord 

 
Participation Expectations 
 

1. Expected individual attendance, punctuality, and 

participation at all team meetings: 

❖ If you can't make it to a meeting let us know, 
otherwise, please participate wherever possible. 

2. Expected level of responsibility for fulfilling team 

assignments, timelines, and deadlines: 

❖ We will all share responsibility for all aspects of this project, but if 
a task is assigned or taken specifically, that individual is 
responsible for a minimum 51% of that task. 

3. Expected level of communication with other team 

members: 

❖ Read and react/respond to messages in the general 
channel on the Discord server 

❖ Use the appropriate channels for your messages on 
Discord. For example, avoid using general group chat 
channel for non-general or individual communication. 

4. Expected level of commitment to team decisions and tasks: 

❖ Please make your opinion known & voice heard 

wherever possible. 

 
Leadership 
 

1. Leadership roles for each team member (flexible and subject 
to change): 

Luke: Circuit board testing, Tayeb outreach 

James: Voron & Scanner calibration 
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Nate: Team Organization 

Daniel: Team internal communication & Voron build 

2. Strategies for supporting and guiding the work of all team 

members: 

1. Being gently, honestly, and openly critical 

2. Holding each other accountable 

3. If not meeting standards, a direct example will be 

given 

3. Strategies for recognizing the contributions of all team 

members: 

1. Active: Reflection & Reports, Verbal expression of 

gratitude 

2. Passive: Author of documents/code, sending a 

message, notes 

 
Collaboration and Inclusion 
 

Skills, expertise, and unique perspectives each team member 
brings to the team: 

Luke: Experience Soldering, electrical circuit knowledge, 
experience with microwave scanners 
James: Experience with Python development, GUI 

development, and sonar & IR scanning/calibration 

Nate: Experience in python, and with Arduino platform 

Daniel: Experience with 3D printing, coding, soldering, 

older perspective 

Strategies for encouraging and supporting contributions and 
ideas from all team members: 

1. No idea is bad idea (brainstorming channel) 

2. Do not hesitate to provide honest Feedback, but try to 

do so in productive ways 
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Procedures for identifying and resolving collaboration or 
inclusion issues: 

❖ post in general or bring it up during a meeting, 
preferably with as much specifics as possible  

❖ Alternatively message any of us 

 
Goal-Setting, Planning, and Execution 
 

1. Team goals for this semester: 
❖ Get all hardware assembled, & a plan for software 

❖ Have fun working together on a large scale 

engineering project 

❖ Learn a bit about professional design & engineering 

practices 

2. Strategies for planning and assigning individual and team 
work: 

1. Based off interest & skill sets 

2. Based on current workloads 

3. Strategies for keeping on task: 
❖ Weekly meetings  

❖ Trying to ask productive questions 

 

Consequences for Not Adhering to Team Contract 
 

1. How will the team handle infractions of any of the obligations of this 
team contract? 

First perform a sanity check with other group mates. If they agree, 
everyone arranges a group meeting to try to resolve the infractions. 

 
2. What will the team do if the infractions continue? 

The group will seek out our Professors (Fila/Shannon), or in some odd 
circumstances Dr. Tayeb. 

************************************************************************************************** 
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a) I participated in formulating the standards, roles, and procedures as stated in this 
contract. 

b) I understand that I am obligated to abide by these terms and conditions. 
c) I understand that if I do not abide by these terms and conditions, I will suffer the 

consequences as stated in this contract. 

1) ____________________Nathan Reff_________________ DATE ____05/04/2025______ 
2) _______________James Perterson________________DATE ____05/04/2025______ 
3) __________________Luke Post____________________ DATE ____05/04/2025______ 
4) __________________Daniel Ripley-Betts__________ DATE ____05/04/2025______ 
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