

MAVinator
Design Document

Team: SDMay25-15

Advisor/Client: Dr. Tayeb

Team: Luke Post, James Peterson, Nathan Reff, Daniel Ripley

Email: sdmay25-15@iastate.edu

Website: sdmay25-15.sd.ece.iastate.edu

Executive Summary
The Center for Nondestructive Evaluation (CNDE) lab plays a critical role in examining
and evaluating metals and other materials to determine their safety and suitability
for research, development, and various applications. By using advanced
non-destructive testing techniques, the lab identifies cracks, flaws, or other potential
defects in materials before they are used in industrial or governmental applications.
This evaluation process is essential in ensuring that materials meet safety and
reliability standards.

The lab has few scanning products and has tasked us with building a new scanner
that can be used by the professors and members of the lab. The goal of this project is
to build a 3D (XYZ) scanning platform for millimeter wave imaging with a similar user
interface to Klipper or Octoprint.

The key design requirements are that the scanner must have a motion volume of
300 mm x 300 mm x 300 mm or larger, and a positional accuracy of 0.5 mm. In order
to accomplish this we are modifying an open source Voron 3D printer with an
in-house designed millimeter wavelength PCB sensor set. As such, the 3D scanner
utilizes a stepper motor and belt-driven gantry design. The approach for this part of
the project was fairly simple, we followed a build guide for implementing the Voron
3D printer, along with manufacturing the PCB sensor set ourselves in-lab. This
greatly reduces the cost of the design and allows us to focus on the physical and user
interface.

The graphical user interface has the following features:

● General Movement
● Perform automated scans on a uniform cartesian grid.
● Perform data collection from a millimeter-wave device.
● Process the data using SAR algorithm and display the results.

The core functionality of scanning and data processing has been implemented and
tested successfully. The user interface has a clean design and provides all of the
necessary functionality to perform a scan and understand the status of the scanner.
This was done through the use of html, css, and js for the frontend and using flask
(python microframework) for the backend, along with integrating Marlin firmware
into the motion controller.

In order to access the user interface the user must simply input the device's IP into
their browser with the port 5000 (<deviceIP>:5000). Our client has stated that this
qualifies as a Minimum Viable Product, but there is much to be improved upon.

1

The next steps will be to refine the toolhead system, post-processing options, and
user interface further. No additional hardware or software is required for this, simply
more time and research are necessary to accomplish these goals. It would also be
good to implement mesh bed leveling, though this may require additional sensors.

Other Potential Next Steps:

● Allow users to define their own scan patterns.
● Modular sensor classes to support swapping tool heads.
● Add clipping functionality to SAR generation.
● Add filtering functionality to SAR generation.
● Polish user interface.

2

Learning Summary
The development of the MAVinator scanner provided valuable learning
opportunities, allowing the team to apply engineering skills and principles
while gaining hands-on experience in hardware assembly, circuit design,
software development, and system integration.

DEVELOPMENT STANDARDS & PRACTICES USED
● Hardware development Practices

○ Followed structured assembly guidelines using the build guide
○ Ensuring precision alignment during the gantry assembly to

meet accuracy requirements.
● Circuit Design Practices

○ Designing custom PCBs with proper routing, grounding, and
power management.

○ Applying best practices in wiring such as labeling, bundling, and
securing cables to prevent damage or interference.

○ Practice safe soldering techniques
● Software Development Practices

○ Writing clean, modular, and well-documented Python scripts for
the backend and data collection.

○ Testing the motion control firmware using iterative debugging
and verification procedures.

○ With multiple threads running concurrently ensure safe memory
usage at all times.

○ Camel-case naming convention for the most part, with some
snake-case for matlab translations.

● Engineering Standards:
○ IEEE standards for embedded systems and software

development.
○ ISO standards for accuracy and repeatability in measurement

equipment.
○ IPC standards for PCB design and manufacturing.
○ ANSI standards for safe mechanical assembly practices.

3

SUMMARY OF REQUIREMENTS

● Build Requirements:
○ Develop a 3D (XYZ) scanning platform for millimeter-wave

imaging by basing the design on and adapting an open-source
3D printing platform.

○ Achieve an imaging volume of at least 300 mm x 300 mm x 300
mm.

○ Ensure positional accuracy of 0.5 mm.
● Mechanical and Electronic Assembly:

○ Utilize a stepper motor and belt-driven gantry design.
○ Assemble the mechanical and electronic components of the

scanner.
○ Upload and configure the motion controller firmware.

● Graphical User Interface (GUI) Features:
○ Enable homing of the scanner.
○ Allow automated scans on a uniform Cartesian grid or

user-defined grid.
○ Perform data collection from a millimeter-wave device.
○ Process data using SAR algorithms and display results (MATLAB

scripts provided).

APPLICABLE COURSES FROM IOWA STATE UNIVERSITY CURRICULUM
● EE 4140 - Microwave Engineering

○ This course introduces students to microwave circuit design and
testing which was valuable in the assembly of the PCBs

● EE/CPRE 3300 - Integrated Electronics
○ Circuit design

● SE/Com S 3190 + Com S 3090
○ These courses cover software development of frontend and

backend for designing a website/app using html, css, and
javascript

● CPRE 3080
○ This course was fundamental to understanding system layers

4

NEW SKILLS/KNOWLEDGE ACQUIRED THAT WAS NOT TAUGHT IN COURSES

This project has provided the team with the opportunity to learn and develop
a variety of skills that go beyond normal coursework, offering valuable
hands-on experience in real-world engineering challenges

● Mechanical Assembly:
○ Assembling a complex gantry system and aligning axes for

precise movement.
○ Understanding and implementing 3D printer-based motion

platforms.
○ 3D modeling parts built off of other models to be put to use in

real life.
● Raspberry Pi Deployment:

○ Picking out libraries that support our given architecture.
○ Headless connection methods.
○ Built upon previous Linux experience.
○ Flashing the Pi OS.

● Circuit Design:
○ Designing, fabricating, and testing custom PCBs tailored for

scanner electronics.
○ 3 out of 4 of us are computer engineering majors and have not

touched any type of circuit design like this before
● Firmware Integration:

○ Configuring and debugging firmware for stepper motors and
motion control systems.

● Python Development:
○ Creating web-based GUIs (Web UI) for scanner operation using

Python backend frameworks.
○ Interfacing Python scripts with external sensors and hardware.

● Measuring using a DAQ:
○ Understanding how the AD2 reads in values, outputs waveforms,

can be triggered to take a measurement, and then applying all of
this in python through their SDK.

● Millimeter-Wave Imaging:
○ Understanding the principles of millimeter-wave technology and

its application in imaging.
● Project Management:

5

○ Coordinating multi-disciplinary tasks such as mechanical
assembly, electronics integration, and software development.

○ Documenting processes and results for academic and
professional purposes.

○ Group scheduling and developing a consistent schedule to meet
amongst ourselves and with our client.

6

Table of Contents
1. Introduction... 11

1.1. Problem Statement.. 11
1.1.1. Project Narrative... 11

1.2. Intended Users...12
1.2.1. Background of Users... 12
1.2.2. Four Types of Users... 12

1. Lab Technician..12
2. Governmental Clients... 13
3. Private Clients.. 13
4. Senior lab Technicians...14

1.2.3. Empathy Map..16
2. Requirements, Constraints and Standards.. 17

2.1. Requirements and Constraints...17
2.1.1. Physical Requirements.. 17
2.1.2. Functional Requirements (specification)...17
2.1.3. Resource Requirements.. 17
2.1.4. Aesthetic Requirements..17
2.1.5. User Experiential Requirements.. 17
2.1.6. Environmental Requirements...18
2.1.7. UI requirements...18

2.2. Engineering Standards... 18
2.2.1. Built-in Standards.. 18
2.2.2. Design Standards.. 19

3. Project Plan.. 20
3.1. Project Management/Tracking Progress... 20
3.2. Task Decomposition..21

3.2.1. Hardware Task Decomposition...21
3.2.2. Software Task Decomposition... 22

3.3. Project Proposed Milestones, Metrics, and Evaluation Criteria............................ 23
3.3.1. Milestones 1:... 23
3.3.2. Milestones 2.. 23

3.4. Project Timeline/Schedule.. 24
3.5. Risks and Risk Management/Mitigation.. 25

3.5.1. Key Risks:..25
3.5.2. Risk Management Matrix..29

3.6. Personnel Effort Requirements... 30
3.6.1 Hardware..30

7

3.6.1 Software.. 30
3.7. Other Resource Requirements..31

3.7.1 Hardware..31
3.7.2 Software..32

4. Design...33
4.1. Design Context... 33

4.1.1. Broader Context.. 33
4.1.2. Prior Work/Solutions...34
4.1.3. Technical Complexity..36

4.2. Design Exploration... 37
4.2.1. Design Decisions... 37
4.2.2. Ideation... 39
4.2.3. Decision-Making and Trade-off...41

4.3. Final Design..44
4.3.1. Overview...44
4.3.2. Detailed Design and Visual(s)... 45

1. Hardware...45
2. Software..48

4.2.3. Functionality.. 55
4.3.4. Areas of Concern and Development.. 56

4.4. Technology Considerations.. 57
5. Testing..60

5.1. Unit Testing...60
5.1.1. Voron Build... 60
5.1.2. Circuit Boards..61

5.2. Interface Testing... 63
5.2.1. Backend API Testing..63
5.2.2. User Interface Testing..66
5.2.3. Hardware Interface Testing... 66

5.3. Integration Testing..67
5.4. System Testing.. 67
5.5. Regression Testing..68
5.6. Acceptance Testing..68
5.7. User Testing... 68
5.8. Results...69

5.8.1. First PCB..69
5.8.2. SAR Processing..70

6. Implementation... 71
6.1 Hardware... 72

8

6.1.1 Mechanical Assembly... 72
6.1.2. Electronics Integration.. 72
6.1.3. Sensor and Housing...72
6.1.4. End Stops..73

6.2. Software..73
6.2.1. HTML Requests... 73
6.2.2. Websockets.. 74
6.2.3. Gcode Generation.. 74
6.2.4 Scan File Saving... 74
6.2.5. SAR Processing.. 75
6.2.6 DAQ and Radar Classes...76

6.3. Design Analysis... 77
7. Ethics and Professional Responsibility... 78

7.1. Areas of Professional Responsibility/Codes of Ethics..78
7.1.1. Area in Which the Team is Performing Well:...78
7.1.2. Area in Which the Team Needs to Improve:..79

7.2. Four Principles... 79
7.2.1. Four Principles Table...80
7.2.2. Broader Context-Principle Pair...80

7.3 Virtues...80
7.3.1. Team Virtues...80
7.3.2. Individual Virtues...81

8. Conclusions..84
8.1. Summary of Progress..84
8.2. Value Provided.. 84
8.3. Next Steps...85

8.3.1. SAR.. 85
8.3.2. Modular Classes.. 86
8.3.3. UI... 86

9. References...88
10. Appendices... 90

Appendix 1 - Operational Manual..90
A.1.1. Connecting to the UI...90
A.1.2. Move Page...90
A.1.3. Scan Page..91
A.1.4. SAR Page..93
A.1.5. Status Box..94

Appendix 2 - Alternative/Initial Version of Design... 98
A.2.1. Initial Sensor and Radar Setup..98

9

A.2.1.2: Prior PCB Layout..99
A.2.2. Sensor Mount Redesign... 100

A.2.2.2: Sensor Mount Drawing... 101
A.2.3. Codebase Adjustments... 102
A.2.4. Digital Acquisition (DAQ) Device Swap..102
A.2.5. Early UI Considerations.. 102
A.2.6. Impact of Changes... 103

Appendix 3 - Other Considerations.. 103
Appendix 4 - Code..103
Appendix 5 - Acknowledgements...103
Appendix 6 - Team Contract... 104

A.6.1. Team Members.. 104
A.6.2 Required Skill Sets for your Project..104
A.6.3. Skill Sets covered by the Team... 105
A.6.4. Project Management Style Adopted by the Team...106
A.6.5. Initial Project Management Roles... 106
A.6.6. Team Contract... 106

10

1. Introduction
1.1. PROBLEM STATEMENT

Scanning can be a time consuming process and there are often not enough
scanners to go around. Simply buying a scanner would be an option if they
were not exorbitantly expensive. Fortunately with a single Millimeter sensor
Armed Voron(MAVinator) we can build a cheap scanner with a large scan
volume. With the addition of a simple user interface that can be remotely
accessed; Scanning at Center for Non-Destructive Evaluation (CNDE) will
become better than it ever has been for the technicians, leadership, and
clients.

1.1.1. Project Narrative

Everyone here at the CNDE is well aware of the shortage of millimeter
wavelength scanners within our facilities. Lab technicians have to work harder
than ever to ensure their scans in a timely manner so that they do not
interfere with others using the facilities. This is a problem as millimeter
wavelength scanning can safely reveal obstructed and less than visible details
of a medium sized object. In addition to being cool, a lack of access to these
scanners can result in further project delays due to increased difficulty in
troubleshooting and evaluation. More scanners would have been purchased
long ago if it were not for the exorbitant cost of a packaged system.

So the CNDE is indeed in need of a cheap and effective millimeter
wavelength scanner solution. That is where the Millimeter wavelength Armed
Voron(MAVinator) scanner comes in as a viable solution going forward. This
system makes use of the open-source Voron 3D printer motion system, an
in-house millimeter wavelength scanner PCB, its sister control board, and our
design of the physical and digital user interface to allow for a cheap and
effective machine with a large scan volume and simple user controls. If the
first build proves the concept, then this system could be implemented on a
larger scale as well due to the low cost.

Our project is bringing the MAVinator to fruition and doing it well. A lot of the
quality of the scan will hinge upon the quality of the printer build, PCB
testing, and programming of the system, so we will do our best to document
the process and any areas of improvement to further refine our process. If we

11

are successful we will have a novel fully functioning non-destructive scanner
operating within the millimeter wavelength range (119-134GHz) for the lab to
make use of.

1.2. INTENDED USERS

1.2.1. Background of Users

Our users have a variety of requirements, but many of them share some
common needs. One of these common requirements is that the scanner
must operate with millimeter waves. Another common requirement is a
reasonably short scan time to promote efficiency. It also must be able to scan
a 300mm x 300mm x 300mm region. Additionally the product should look
professional and have a user interface that is easy to understand, and overall
easy to operate. We have created some different personas that represent the
different users and their needs that this project aims to address.

1.2.2. Four Types of Users

1. Lab Technician
Eli needs to be able to scan materials at a quicker rate because he is
experiencing too much downtime in his project which is leading to
unmotivated work and adding another scanner could do that.

He also wants to be able to extend upon the research he does in the lab to
higher frequencies which is why a millimeter wave scanner is important.

Requirements:

➢ Functional
○ Needs a scanner that works in the millimeter wave frequency

range
○ Needs the scanner to be able to move in 3 dimensions

➢ Resource
○ This system needs to be able to connect to a web app or

computer to control
➢ Physical

12

○ Should be large enough to scan the things his boss gives him
(which will be a max size of 300 mm x 300 mm x 300 mm)

➢ Aesthetic
○ The app should look good enough that it is easy to use and

understand
➢ User experiential

○ Needs the software to be easy to use either from a web app or a
computer connected to the device

○ Needs it to export a file of the data to be analyzed

2. Governmental Clients
As an investigator at NASA Magnum needs to reveal the internal structural
makeup of his custom manufactured item because he needs to be able to
make a more informed decision based on that.

Requirements:

➢ Functional
○ Reliable and repeatable results
○ Analysis even through opaque materials
○ Non destructive investigations
○ Reasonable scan times

➢ Resource
○ Time it takes to perform the scan is valuable to this type of user

➢ Physical
○ Maintain the safety and integrity of the item to be evaluated
○ Could need anywhere from 1cm x 1cm x 1cm to 30cm x 30cm x

30cm or possibly larger
➢ Aesthetic

○ High fidelity scan results
➢ User experiential

○ Simple ordering experience

3. Private Clients
Ted needs a way to seamlessly integrate reliable 3D millimeter wave scanning
hardware and software components into advanced security systems because
this ensures precise sensing capabilities and simplifies product development

13

for WaveSense Innovations, keeping their solutions at the forefront of the
industry’s technological advancements.

Requirements:

➢ Functional
○ It needs to be able to do millimeter wave scanning
○ Scanner must be able to identify various materials within

scanning area
○ System should provide API for integration with other applications

➢ Resource
○ It should be cheap to build
○ Scanner should not require more than 4 GB of RAM

➢ Physical
○ Could need anywhere from 30cm x 30cm x 30cm to 1m x 1m x 1m

or possibly more
○ Total weight should not exceed 5 kg for ease of portability and

installation
➢ Aesthetic

○ Scanner exterior should have modern design
○ App should have a sophisticated design and be user friendly

➢ User experiential
○ Company associates should be able to operate easily
○ Software interface should be intuitive with clear visual indicators

and real-time feedback
➢ Environmental

○ System should be able to operate indoors and outdoor
environments

4. Senior lab Technicians
As a lead researcher at CNDE, Tabey needs to look deeper inside small
volumes of material for her own research and vicariously through her team for
larger projects. Tabey needs a more affordable scanner in the CNDE lab
because the number of scanners in the lab is too few to effectively complete
work.

Requirements:

➢ Functional

14

○ It needs to be able to do millimeter wave scanning
○ It needs to fit within the existing lab environment

➢ Resource
○ It should be cheap to build
○ Build time should not be longer than one month
○ The time it takes to operate should be the same if not less than

other scanners
➢ Physical

○ It needs to be able to be implemented on a Voron printer
○ It needs to cover an area of 300 x 300 x 300 mm
○ It needs to make use of the in house millimeter scanner

➢ Aesthetic
○ The app should look sleek while still providing good user

experience
○ The scanner should look sturdy and professional

➢ User experiential
○ Lab technicians should be able to operate easily
○ The scanner should be able to be remotely started and stopped

15

1.2.3. Empathy Map

Empathy Mapping helps identify the thoughts and feelings of a user. As our
primary user is a senior Technician, we used him to create our primary
empathy map. In this empathy map, we were able to understand how this
user will interact with the final product .

16

2. Requirements, Constraints and
Standards

2.1. REQUIREMENTS AND CONSTRAINTS

2.1.1. Physical Requirements

➢ The finished product should easily fit into the CNDE lab environment.
➢ The overall frame dimensions will be 350mm x 350mm x 350mm.
➢ The design should be compact, stable, and easy to position within the

lab setting.

2.1.2. Functional Requirements (specification)

➢ Scanner should operate within a volume of 300mm x 300mm x
300mm.

➢ Scanner should be able to detect dense materials at least 2.4mm in
width.

➢ Sensor head should work with the existing toolhead mount and
raspberry pi board.

2.1.3. Resource Requirements

➢ The scanner should be cost effective, utilizing affordable components
without sacrificing performance or reliability.

2.1.4. Aesthetic Requirements

➢ The final product should look professional, clean, like a commercially
available scanner.

➢ The wiring and electronics should be hidden where possible.
➢ The print head should fit with the aesthetic of the overall build. This is

aided by the already professional Voron motion system.

2.1.5. User Experiential Requirements

➢ The scanner should be designed for ease of use, enabling users to start
scans quickly without needing to make physical adjustments.

17

➢ Preparation for scans should be intuitive, and the scanning process
should be as fast and efficient as possible while maintaining accuracy.

2.1.6. Environmental Requirements

➢ The design should comply with environmental standards for electronic
devices, using materials that are durable yet environmentally friendly
where possible.

2.1.7. UI requirements

➢ The user interface should be intuitive, easy to navigate, and designed to
guide the user through the scanning process with ease.

➢ The UI should present only essential features, keeping the workflow
streamlined.

➢ The design should be visually appealing and cohesive with the
professional aesthetic of the hardware

2.2. ENGINEERING STANDARDS

Engineering standards are an essential part of modern design and
engineering. Without them the likelihood of two devices using a similar
communication protocol would drop drastically. Our team has placed a great
deal of emphasis on recognizing and incorporating IEEE standards where
possible. Below is an outline of the key standards relevant to our project.

2.2.1. Built-in Standards

Built in standards are standards that are implemented by subcomponents
that our team has no hand in designing but will still be pertinent to know.

➢ 802.11ac (Wi-Fi standard)
○ This standard governs wireless networking and communication

protocols, ensuring our scanner integrates effectively with the
CNDE lab’s existing wireless infrastructure. Compliance with this
standard allows for reliable and fast data transmission over Wi-Fi.

18

 2.2.2. Design Standards

Design standards are standards that are not given to us by subcomponents
but are selected by design. These are chosen to ensure the scanner complies
with standards for devices in a similar class.

➢ IEEE 149: Standard Test Procedure for Antennas
○ This standard provides test procedures for evaluating antenna

performance. This standard is applicable to our project because
we will be using an antenna to transmit and receive millimeter
waves. Adhering to IEEE 149 ensures that the antenna used in our
scanner is accurately tested and optimized for effective signal
transmission

➢ IEEE C95.3: Recommended Practice for Measurements and
Computations of Electric, Magnetic, and Electromagnetic Fields with
Respect to Human Exposure to Such Fields, 0Hz to 300 GHz

○ This standard addresses the measurement of electric, magnetic,
and electromagnetic fields, specifically with regard to human
exposure to such fields. This is applicable to our project because
we will be using millimeter waves between 119 and 134 GHz

➢ IEEE 26514: Standard for Adoption of ISO/IEC 26514:2008 Systems and
Software Engineering--Requirements for Designers and Developers of
User Documentation

○ This standard guides the creation of user documentation for
systems and software products. It is applicable to our project for
the documentation we create on how to interface with our
finished product and maintain it.

➢ P3397: Standard for Synthetic Aperture Radar (SAR) Image Quality
Metrics

○ This standard defines quality metrics for SAR imaging systems. It
applies to our project because we will use SAR to process the data
and display the results of the scanner

19

3. Project Plan
3.1. PROJECT MANAGEMENT/TRACKING PROGRESS

Project Management Methodology:

We will employ a hybrid approach combining elements of both Waterfall and
Agile methodologies to efficiently manage the MAVinator project.

Waterfall Methodology:

● Phase-based: The project will be divided into two distinct phases:
Hardware, and Software with the hardware phase scheduled to be
completed this semester. The software development phase will consist
of developing the user interface and development of the frontend and
backend. This portion is anticipated to approach completion towards
the end of next semester.

● Sequential: Certain sprints will rely on others being completed before
they can begin. The assembly of the sensor tool-head relies on the
completion of the housing and PCB. The electronic wiring requires the
frame and motors to be mounted to have anything to wire. Lastly the
user interface will require all other components be assembled before it
can begin.

● Documentation-heavy: Documentation will be maintained throughout
the project, including requirements/specifications, this design
document, test plans, and user manuals.

Agile Methodology:

● Hardware task decomposition: We have broken down the phases of this
project into simpler segments or sprints. The housing for the scanner,
the printer frame, and the PCB as smaller components of the Hardware
phase can be worked on in parallel.

● Software task decomposition: Similarly we broke down the software
development into smaller sprints. The HTTP development of a
connection between frontend and backend, the BTT Pi imaging,
websocket integration, frontend polishing, and DAQ + SAR algorithms
were our major sprints.

20

● Frequent feedback: Regular feedback loops have been established with
the project stakeholders to ensure that the project is aligned with their
needs and expectations.

● Continuous improvement: We have continuously evaluated and
improved our processes and methodologies throughout the project.
This has been accomplished through team meetings, and independent
research.

We primarily utilized discord for communication and tracking progress, such
as notes from meetings, progress pictures, and any additional
documentation/research. We also divided up work and decided on the
leaders for each milestone over Discord calls together.

We primarily used github for the software development portion of our
project. Uploading firmware, frontend code, and flask python backend code,
with any other additional files.

3.2. TASK DECOMPOSITION

 3.2.1. Hardware Task Decomposition

Semester one consisted of the hardware integration. The task decomposition
starts with the foundational PCB, soldering all components, followed by
testing the circuit board. The PCB is then ready for the design and print of a
housing/mount, after which the sensor toolhead is ready for assembly.
Concurrent to those, the frame and drives are assembled, once they’re ready,

21

the wiring will be integrated. With those two major milestones reached the
MAVinator is ready for full assembly and our goal for this semester is
complete. The design and implementation of a software user interface can
then begin. All throughout the design documentation is being updated,
referenced, and polished.

 3.2.2. Software Task Decomposition

This is the general layout of the software development process of the project
including the connection from the backend to the frontend through
websockets and HTTP requests

The task decomposition of the software development process starts with first
making the initial html, and css files for a general user interface. The next big
step is the client to server connection using javascript for the frontend and
the using flask for the backend. While this is happening, uploading the
firmware to the Octopus main board and testing sending g-code to the
scanner for general movement and homing functionalities is ongoing. Once
firmware is on the Octopus an image can be installed on the BTT Pi. After all
of these steps are completed installing the backend software onto the BTT Pi
allows for a connection from the user interface to the scanner, thus sending
g-codes from pushes of ‘buttons’ on the web GUI. Lastly finalizing the
development of Scanning and SAR algorithms along with cleaning up the UI
to be User friendly, and testing everything along the way the foundation of
the software side of the project is complete.

22

3.3. PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA

Milestones 1 encompasses all work needing to be completed before semester
two, and Milestones 2 encompasses all following work.

3.3.1. Milestones 1:

1. PCB Soldered and ready for testing
2. Scanner frame assembled with less than 3mm out of square
3. Scanner hardware interface ready for PCB mounting
4. Testing of PCB radar completed
5. Wiring of motion system completed
6. Sensor mounted, wired, and working on laptop backend
7. Systems testing started

3.3.2. Milestones 2

1. Firmware installed onto Octopus Motion board and basic system
testing completed

2. Finalization of software design architecture decisions and basic
Flask web UI implementation

3. First version of web UI installation and testing on BTT Pi hardware
4. Scan pattern generation integrated into scan function and

outputs an array of g-code commands to specification
5. Physical mount redesign to accommodate radar swap fits new

radar and gantry shuttle
6. Radar scripts re-written to read single shot data read from new

DAQ and ensure FTDI scripts write PLL registers on the BTT Pi
7. SAR algorithm processes .scan files similarly to matlab and

file-system scripts save .scan files where the user selects
8. Final testing + Presentation, the general sharing of insights

gained and success achieved

23

3.4. PROJECT TIMELINE/SCHEDULE

This is the schedule the project has followed for the hardware development
portion. The scanner electric wiring end date has had to be pushed out by
one week, resulting in an overlap with the housing design.

Milestone
Start
Date

End
Date

Len
gth

Progres
s/status

Lead Notes

Soldering sensor
PCB

10/7/2
024

10/17/
2024

10 100% Luke
The spi connectors
were originally put on
reversed

Testing of sensor
PCB

10/17/
2024

10/31/
2024

14 100%
Luke,
James

Scanner frame and
motion system
hardware

10/16/
2024

10/23
/2024

7 100%
Nate,
Daniel

Two of the rails, one z
one y are short
bearings

Scanner electronic
systems

10/23/
2024

11/7/2
024

15 100%
Nate,
Daniel

Housing of sensor
10/31/
2024

11/14/
2024

14 100% Daniel

Complete motion
systems testing
with mount

11/14/
2024

11/21/
2024

7 100%
Collectiv
e

Thanksgiving break
after

Holiday
11/29/
2024

1/21/2
025

53 100%
Collectiv
e

Holiday

Return/Reorganize
after holiday

1/21/2
025

2/9/2
025

19 100%
Collectiv
e

Back from Holiday

Finish physical
testing/Lab access

2/10/2
025

2/21/2
025

11 100%
Nate +
Dan

Octoprint
plugins/mods
design decision

2/10/2
025

2/14/
2025

4 100%
We will develop a
webserver in python

Initial design of
User interface -
Frontend

2/10/
2025

2/14/
2025

4 100% Nate Html + css + js design

Implent Flask
based design
(standalone)

2/15/2
025

3/17/2
025

30 100%
James +
Luke

Specifically the UI
elements necessary for
project requirements

Installing/Testing
Python on
Raspberry Pi

2/21/2
025

2/28/
2025

7 100%
Dan +
Nate

Create Python
script to generate
scan patterns

2/28/
2025

3/3/2
025

3 100%
Luke +
James

Fired after each
movement to a new
point

24

Physical mount
integration

3/3/2
025

3/6/2
025

3 100% Daniel

Integration of SAR
script and radar
script to backend

3/6/2
025

3/17/2
025

11 100%
Luke +
James

Pre+Post-scan
processing

Spring break
3/17/2

025
3/21/2

025
4 100%

Frontend Polish
and refinement

3/21/2
025

4/2/2
025

12 80%
Nate +
James

Software testing /
Internal
demonstration

4/2/2
025

4/15/
2025

13 0% Daniel

Design
Documentation

4/16/
2025

4/20/
2025

4 0%
Collectiv
e

Poster Design +
Practice

4/24/
2025

4/28/
2025

4 0%
Collectiv
e

Prep Week +
Presentations

5/5/2
025

5/9/2
025

4 0%

3.5. RISKS AND RISK MANAGEMENT/MITIGATION

 3.5.1. Key Risks:

The "Key Risks" section is crucial for identifying and mitigating potential
issues that could hinder the project's success. By proactively recognizing
these risks, the team can develop strategies to minimize their impact and
ensure the MAVinator project stays on track. The risk matrix is a more
graphical way of visualizing their categorization.

25

Risks - Core Details

Rank &
Trend

Risk Title Approach Likelihood Consequences

1 PCB does not work as
intended initially

M 5 3

2 Physical build runs over
schedule

W 2 4

3 Linear rail missing
bearings

A 5 1

4 PCB has catastrophic
short

A 1 5

5 Frame out of square
during testing

W 2 1

6 Sensor toolhead
cannot determine
location

M 1 5

7 Over-voltage motors R 1 2

8 Electrical interference M 3 4

9 Data could be lost
during a scan

M 3 3

10 User entered Z-height
too low

M 3 5

Risk Assessments - Descriptions & Mitigations

Rank &
Trend

Risk Title Description Mitigation
Strategy

26

1 PCB does not
work as intended
initially

A fixable issue occurs with
PCB sensor, could not scan

2 Physical build
runs over
schedule

Build runs into next
semester, could not scan

3 Linear rail
missing bearings

One linear z and y rail are
missing <4 bearings,
accepted, plan to replace

4 PCB has
catastrophic
short

A short bad enough it
burns the board irreprably,
could not scan

5 Frame out of
square during
testing

Frame out of
square/gantry not
de-racked results in
inaccuracies, could scan

6 Sensor toolhead
cannot
determine
location

Sensor loses or has no way
to determine position,
could break sensor PCB

Emergency stop
on all pages

7 Over-voltage
motors

Motors run over-voltage
due to improper driver
config, burnt out, could
scan

8 Electrical
interference

Interference impedes
accurate measurement,
need to eliminate internal
sources

Electrical
shielding on all
A/B motor wires

27

9 Data could be
lost during a
scan

Data lost on page refresh
(front-end) or power loss
(back-end)

Save data to file
as read, process
on backend

10 User entered
Z-height too low

Low Z-height could
damage object or sensor

Enforce
minimum
Z-height at all
times

28

3.5.2. Risk Management Matrix

29

3.6. PERSONNEL EFFORT REQUIREMENTS

3.6.1 Hardware

Milestone Person-hours

Soldering sensor
PCB

15

Testing of sensor
PCB

10

Scanner frame and
motion system
hardware

24

Scanner electronic
systems

16

Housing of sensor 12

Complete systems
testing

8

3.6.1 Software

Milestone Person-hours

Frontend UI
development

15

Main backend flask
development

55

New mount
customization and
wiring setup

10

Connection to
Raspberry Pi

10

Scan pattern
generation

10

Firmware + backend
research

13

Firmware
customization

10

30

FTDI from BTT Pi
troubleshooting

10

Digilent DAQ
programming +
Troubleshooting

20

SAR Script Migration 35

3.7. OTHER RESOURCE REQUIREMENTS

3.7.1 Hardware

31

Part Quantity

Millimeter
wavelength
transceiver board

1

Transceiver control
circuit board

1

Voron printer kit 1

Raspberry Pi 1

Computer 1

FTDI cable 1

Coaxial cable 4

Loctite 1

3D printer (to
manufacture
mount)

1

Digilent Analog
Discovery 2 + BNC
Breakout board

1

Part Quantity

Cable Management
Kit

1

USB A (male) -> USB
C (male) cable

1

Faraday insulation 10ft

3.7.2 Software

Python Libraries Used:

Library Use

flask Build web applications and APIs in
Python

semantic Design user interfaces for web
applications (HTML/CSS/JS framework)

pydwf Control Digilent WaveForms hardware
devices (like Analog Discovery) from
Python

serial Communicate with devices over serial
ports (COM, tty).

ftd2xx Interface directly with devices using
FTDI USB chips via D2XX drivers

matplotlib Create static, animated, and
interactive plots and visualizations

numpy Perform efficient numerical
computations using arrays and
matrices

Marlin (firmware) Uploaded to motion controller for
proper sensor movement

32

4. Design
4.1. DESIGN CONTEXT

 4.1.1. Broader Context

In a broader context, the MAVinator is designed for any NDE community that
is seeking to utilize millimeter wave imaging. Not only does this affect the
specific NDE industry, but also all of the industries that rely on NDE to ensure
product safety such as the automotive industry, space industry, Navy, and
many more. Equipment such as the MAVinator is utterly important due to the
enhanced safety it brings to those industries. Faults and defects are able to be
detected prior to the product entering the market while saving the
companies money as this method of examination is noninvasive and leaves
the product perfectly functional.

Area Description Examples
Public
health,
safety, and
welfare

The main purpose of the
MAVinator is to detect faults,
cracks, and any other defects
in products before they reach
the market or are used for
their intended purpose.
Being able to discover these
things prior to use ensures
damaged products don’t
leave the manufacturing line
and provides more safety in
every industry that it is
utilized.

A Chinese commercial
rocket had a defect in
the foam insulation
which fell off on launch
and caused rocket failure
(i.e. blow up). This could
have been detected
using millimeter wave
scanning devices.

Global,
cultural,
and social

The MAVinator is designed
around meeting the goals of
the industry, which are to
provide reliable methods of
scanning objects to ensure
their safety and functionality.

Development and
operation of the
MAVinator will allow NDE
researchers and
scientists the ability to
perform scans of
materials that returns
accurate results while
minimizing
opportunities for human
error.

33

Environme
ntal

The MAVinator can have a
great impact on the
environment as it tests
objects without destroying
them and is predominantly
made from 3D printed parts.

Decreases the amount of
waste from safety testing
in the automotive and
space industry as all of
the tested material is still
usable.

Economic Our product, the MAVinator,
will speed up scan times and
therefore reduce the cost to a
consumer. It is also relatively
cheap to produce in and of
itself which enables more
people or companies to
utilize it.

The MAVinator is more
affordable than other
current millimeter wave
scanning devices and is
open source so other
users can build off of it,
reducing cost.

4.1.2. Prior Work/Solutions

Millimeter and microwave sensing have been used extensively over the past
two decades for military, security, and general radar purposes to detect things
invisible to the naked eye. This is due to the wavelengths being able to pass
through most porous material, such as fabric, fog, or foam, and show any
more reflective, usually metal, object on the other side. The first papers
presented in this realm were in 1997 about smart technical guidance systems,
surveillance, and concealed weapon detection [2]. Shortly after, the origins of
what we now see used for security in airports, the L3 Provision, was presented
in 2000. That device uses an array of millimeter wave transceivers operating in
the range of 16 - 30 GHz to scan a person in a cylindrical manner. It then
performed synthetic aperture holographic methods to reconstruct a
high-resolution image of the scan target.

This technology has since been shrunk down to a handheld application called
MilliCam by Saadat and Ramanathan, et al. [3] This application uses the
synthetic aperture radar (SAR) imaging algorithm to map the reflection to the
spatial domain. One of the main challenges in transforming these millimeter
sensors into handheld devices that operate in the nearfield is the loss in
image quality due to aperture motion. The Fourier transform equation used
to do the SAR calculation relies on precisely known coordinates of the
aperture location, and any error over a half-wavelength (which is 2.5 mm at
60 GHz) can distort the image. [3] fixes this problem by employing a

34

co-located optical camera. The Millicam can use this to compute the position
and trajectory of the device during a hand-swipe measurement. Squint
correction was also used to further enhance the image quality.

For our purposes, we are interested in millimeter wavelength technology
specifically for nondestructive Evaluation (NDE). In this field, millimeter wave
imaging has been used to detect surface cracks in metal [4], building and
concrete infrastructure [5, 6], and composite material assessment [7]. This
technology has been advanced by Yalcinkaya, Aydin, and Kara [8] to become
simpler and more affordable. In their study, parameterized control over the
sampling intervals, scanning aperture, and chirp settings was integrated to
eliminate the need for complex processing while still maintaining
high-quality imaging. One Tx and one Rx antenna operating in the range of
77 and 81 GHz were mounted on a scanning system that could move both
vertically and horizontally. The antennas were then moved in a raster manner
to scan the target. SAR processing was then completed on the data. It is
important to ensure the spatial sampling interval satisfies the Nyquist
sampling criterion to avoid aliasing so ghost targets do not appear. This
system also used a graphical user interface (GUI) on a host computer to
control the movement and scan settings of the device, as well as to display
the SAR results.

Furthermore, the CNDE already utilizes 2D scanning systems using
microwave wavelength technology for NDE purposes. These systems use
Labview to control the movement of the target while the sensor remains in a
fixed location and to collect the data. MATLAB is then used to perform SAR
processing on the data resulting in a 2D and 3D image. The CNDE commonly
uses these imaging systems to detect surface cracks in metal and defects or
abnormalities within foam or other low dielectric materials. Image quality of
these scans can be improved by pre-processing the data before SAR
calculations are performed. These methods have been shown to easily detect
rubber pellets inside of foam, short thin wires, and cracks and defects in a
wide range of materials.

35

4.1.3. Technical Complexity

Our project, the MAVinator, contained many components of technical
complexity that challenged every member of the group and helped us to
grow in our understanding of engineering. Our work crossed several
disciplines, not all of which we were familiar with previously, including
mechanical system building, precision electronics assembly and testing, web
application creation, including front and back end, device control, data
collection and processing, and testing.

The MAVinator began with the build of the Voron printer which consisted of
several components and complex mechanics. One of the largest components
of the build was the gantry system which controls the position of the sensor.
This system involved multiple components on its own which all had to be
perfectly and precisely aligned to function correctly. Since this controls the
position of the sensor, if anything was out of alignment, it could cause serious
errors such as crashing into the boundaries, reporting back incorrect
locations, and recording data incorrectly. During the build, changes to certain
aspects of it had to be made to align with our project goals. This required
much adaptability and problem solving as we figured out what worked and
what didn’t work in our system. This Voron build also included the integration
of electronics, a Raspberry Pi and Octopus MCU, which needed to be able to
communicate between the user's input and the function of the Voron.

Digging into the electrical engineering side of things, a pair of PCBs needed
to be soldered for the sensor portion of the project. This required precision
soldering under a microscope and extensive testing to ensure that each PCB
was functioning as expected. This is a critical part of any PCB design in all
industries as a single short in an electronic can permanently damage an
entire system.

We were also tasked within the scope of the project to create a modern web
application used to control the Voron and sensor. This required extensive
research into GUI design and aspects of frontend and backend coding.
Communication in this part of the project was even more vital than before as
none of the members had much or any experience creating a GUI to interact
with a physical system which meant we were continually learning along the
way. The GUI was designed to meet professional standards in terms of
physical appearance, user interaction, and code readability.

36

Adaptability ended up being a major slogan for our project by the end,
especially relating to the device control and data collection. Our project
required us to interact with a Raspberry Pi, Octopus MCU, sensor PCB, and a
digital acquisition (DAQ) device. All of these needed to be able to
communicate with each other and work together to make our project
function. This system was up and running, but with two weeks before the
project deadline, our sensor was needed for a different project, as well as the
DAQ we were using. We were unable to be provided with the same sensor,
but a new one was given to us, even though our advisor specified we would
be using the other sensor we had built. The new sensor had to be
programmed slightly differently, and the new DAQ had to be completely
reprogrammed. With only two weeks left, this required quick thinking,
determination, and adaptability to get our project up and running.

In the end, all of these components had to be seamlessly integrated together
to provide the user with a pleasant experience while also upholding the
integrity of the functionality of the system.

4.2. DESIGN EXPLORATION

4.2.1. Design Decisions

The MAVinator project aimed to develop a cost-effective, 3D scanning
platform for millimeter-wave imaging. Our initial design decisions were based
on specific hardware components and their pre-made software frameworks,
carefully selected to meet project requirements and client needs. However, as
is often the case in complex engineering projects, we encountered
unforeseen challenges that required us to adapt and modify our approach.
Notably, late-stage changes in available hardware, specifically the Digital
Acquisition (DAQ) device and the radar sensor, necessitated significant
adjustments to our design and implementation.

Initially, we needed to design a housing for the sensor PCB. This is important
for a couple of reasons. To protect the PCB from the elements to ensure the
product works reliably, provide a more professional looking design, and
ensure optimal sensor positioning/angling. For this mount, we have
significantly deviated from the prototype first designed by Aaron McCarville.
This was the optimal solution for us as we could extract all the measurements

37

directly from the existing STL (file format used to represent 3D models) and
start over with them.

The next major component we had to design was a UI to control the scanner.
This is needed in order to complete scans and view the results in a human
understandable format. For this, we chose to utilize Python as the base
language for the backend with libraries to supplement our needs. We chose
Python due to its widespread support, clients request, and ease of use,
allowing the users to update the UI down the road as well. Flask has been
researched as the primary library for the GUI design due to its ease of use and
broad support as well. We designed the frontend with html, css, and
javascript and set up POST and GET endpoints for frontend-backend
integration.

We designed a calibration/testing method for the scanner and sensor. This is
vital in completing scans as it will position the scanner in a known position to
accurately image an object. We used three limit switches for homing the X, Y,
& Z axes. When the home button is pressed in the GUI, the sensor will move
all the way in one direction on the x-axis and do the same for the y-axis to get
its location in those planes. Then, it will move up until it hits another limit
switch at the top of the Voron frame, allowing the sensor to know its relative
location at all times.

For scan pattern generation, the decision was made to implement a system
that mainly operates within a cartesian grid but could be easily customized.
This approach ensures basic functionality while leaving room for expansion.
The initial focus is on a grid pattern as it meets the core requirement of
systematic scanning. This involves calculating a series of XYZ coordinates
within the defined scanning volume, which are then translated into G-code
commands for the scanner's motion controller. If the users scan dimensions
are not easily divisible by the step size, then we chose to let the user decide
how to handle the resolution themselves with a notification and suggestion.

Regarding SAR processing, rather than developing the algorithms from
scratch, we decided to port existing MATLAB scripts to Python. This decision
was primarily driven by efficiency and accuracy. The MATLAB scripts had
already been validated and tested, ensuring the reliability of the SAR
processing. To facilitate this, AI tools were employed to assist with the
translation process. This approach may have moderately increased the time it

38

took when compared to rewriting the complex algorithms manually. Utilizing
AI for this task seemed to complicate things in some regards, but did help to
understand some available tools.

At the last minute we discovered that we needed to switch to a new Digital
Acquisition (DAQ) device as the National Instruments (NI) DAQ did not have a
library that supported Linux. The NI DAQ originally had pre-written code that
would work for our purposes and we had to recreate the functionality for the
new Digilent Analog Discovery 2, which now serves as our DAQ. We briefly
considered using the AD2 to take the place of the FTDI cable but decided
against this in the end due to time constraints.

4.2.2. Ideation

For the UI, we went through multiple iterations of design concepts. One idea
was to build off the previous UI using Labview, but this UI was not
user-friendly and needed improvements. Our next option was to build the UI
from scratch, given our ideas; however, this left some unknown variables for
the client and unfamiliarity with the current UI. We then thought that we
could build a modification for an existing library like Octoprint or Klipper,
though this would impose too many requirements and dependencies on our
project. Ultimately we wound up deciding on building a Web based user
interface similar to the likes of Klipper using Flask. It would be built in such a
way that mimics the physical interfaces of existing lab equipment.

With the scanner body (Voron motion system), we had fewer ideas to work off
of as a bulk of the design was set by the kit designer. The bulk of the decisions
were between modifications to the kit and the firmware to use on the
Octopus MCU. The modifications considered were switching out limit
switches and adding cable insulation to motor wiring, and location/firmware
definition for Z-max movement limit switch.

At first, we were only looking at the build as laid out by the kit. In the later
stages of the scanner's construction, modifications to the kit began to be
considered as options. We found the options available to us through
discussion with print enthusiasts and research online with the exception of
the cable insulation. Ultimately, we decided to get the scanner up and
running as simply as possible with a first prototype motion system. The
decision to insulate the motor cabling came from an examination of the

39

pre-existing scanners and a discussion with our advisor. These talks ultimately
led us to believe the shielding for the A/B motors would be necessary to
mitigate the electric interface in the scan.

The process of deciding a firmware has been a bit of a winding road. Initially,
we selected Klipper for the firmware to be installed on the Raspberry Pi,
which would then flash firmware to the Octopus MCU. We moved away from
this idea primarily because of the existence of Marlin firmware that was used
in the previous version of this scanner that could be modified for our
purposes. This also shifted our goal of software design as now we would be
interfacing with the Octopus running the firmware with the Raspberry Pi
acting as a server/controller.

We went through several ideas of how the file management and SAR
processing would be handled. Initially we were working towards having the
file creation and saving along with SAR processing done on the frontend. This
was to minimize the load on the BTT Pi, however, we quickly realized that the
frontend would lose the data if the page was refreshed which would not work.
In the end we decided on the backend creating and storing one scan's worth
of data in a temporary file and the client downloading it. Likewise we elected
to handle the SAR processing on the backend, uploading the unprocessed
.scan file and generating a SAR image that is transmitted back.

When generating the initial pattern for scanning we took in a lot of user
feedback to ensure it would provide the needed functionality. At first we
simply rounded the differences if the length or width was not divisible by the
step size, additionally, we only had one step size for both length and width.
After taking in feedback we implemented a prompt for the user to select
what they would like to change the scan parameters to evenly divide, the
length or step size for the length. Lastly, we implemented independent step
sizes for lengths and widths.

Deciding on an operating system was simple after our research indicated that
the lightest weight operating system was a customized lightweight Debian
provided by Big Tree Tech (BTT) themselves.

When we learned that the National Instruments (NI) Digital Acquisition (DAQ)
device would work, deciding on a new DAQ to use was made easier by Dr.
Tayeb’s suggestion of the Digilent Analogue Discovery 2. Though we did need

40

to do additional research to ensure that it would work on Linux and could
serve our purposes.

4.2.3. Decision-Making and Trade-off Tables

Using Previous UI

Pros Cons

Easy to implement Not user friendly

Familiar to client Clunky

Know it works Not portable

Made in-house Uses LabView

Building from Scratch

Pros Cons

Made to our needs Hard to implement

Customizable Not familiar

Can work with tools we know Time-consuming

Can be made with Python

Can be made easier to maintain

41

Utilizing Marlin Firmware

Pros Cons

Basic version provided to us Every change requires compilation
and flashing

Has better support community Does not include web interface

Runs only on the Octopus MCU,
reducing demand on Raspberry Pi

Simpler in concept as we can make
direct modifications to the firmware

Utilizing Klipper Firmware

Pros Cons

Easy and quick updates and/or
modifications

Documentation may be out of date

More actively supported Harder to modify for large changes

Has a web interface Changes are made via changes to a
configuration file

 The nature of Klipper means that it
must support needed commands, or
require a custom plugin library for
support of unusual commands like
triggering the sensor.

After weighing the Pros and Cons we decided to use the Marlin firmware due
to our advisor/client already having it ready for us to use. We still needed to
make modifications to support our style of movement and homing.

42

Frontend SAR and File system

Pros Cons

Not hardware constrained Catastrophic data loss on page
refresh

 Browser performance could
negatively impact output

Using Debian over Armbian

Pros Cons

Light weight No desktop environment

Support direct from manufacturer

Switching to new Digilent DAQ

Pros Cons

Works on linux Rewrite entire reading code

Has a python library that works on
linux

Lose the differential input, increase
in noise

MAVinator would not require an
external computer running windows

43

4.3. FINAL DESIGN

4.3.1. Overview

Our project is to build a 3D scanning platform designed specifically for
millimeter-wave imaging, allowing users to capture detailed internal aspects
of an object. Similar in principle to a 3D printer, this machine will be a scanner
that will move in three dimensions: X, Y, and Z directions. Instead of printing,
our scanner will use a specialized millimeter-wave sensor device to capture
internal aspects of objects in its imaging area.

The frame of the scanner allows for 300 mm3 of space across all directions.
The movement of the scanner head will be powered by stepper motors and
belts, to allow for a smooth and accurate scanning movement. The motors are
small motors that rotate with the belts connected to them to allow for the
movement of the gantry system.

The central portion of the machine is the millimeter-wave imaging device,
which will collect data by sending out and receiving millimeter-wave signals.
The data from this device lets us create a 3D map of the object. This wound
up needing to be replaced with a new radar as it was required for other
purposes in the CNDE.

In addition to the physical portion of this project, a GUI is developed to allow
users to interface directly with the scanner on a web based application. The
users have the ability to move the sensor in any direction, go to certain
coordinates, or home any axis or all the axis

The other main functionalities are the ability to scan an object by applying
scan configuration values and also viewing real time data. Lastly they are able
to upload a .scan file as scan data and calculate SAR.

44

4.3.2. Detailed Design and Visual(s)

The detailed design is separated into two different sections: Hardware and
Software. The Hardware section covers the physical build of the scanner and
the integration of the gantry system and electronics. The Software section
covers all the files created and the creation of the user interface and the
connection from the application to the scanner along with the functionalities.

1. Hardware

Frame

Our design plan requires us to start with the assembly of the frame for the
scanner. Extra Care is taken to ensure that the corners are Square from the
start of the build. We define our X, Y & Z. This is shown in Figure 4.3.2-1.

Motors

The z-motors are placed under each of the
bottom corners, working as legs for it
(Figure 4.3.2-4). These motors are
connected to a drive train gear reduction,
the output of which is connected to the
corners of the gantry. This allows the gantry
to move along the Z axis as the belts move
through the idlers.

Gantry System

The X and Y rails are implemented on the
inner workings of the printer, creating the
gantry system. A/B belts run along each rail,
which allows the sensor head to move in the X and Y-axis while the entire
gantry system moves vertically. Both A/B are connected directly to a gear on
the motors, then attached to the idlers and toolhead mount to be able to pull
it one direction or the other. This happens with a differential between the
motors.

45

When there is a differential between them the toolhead moves in the Y-axis
and if they are moving simultaneously then the toolhead moves in the X-axis
(see Reference Mechanism: Figure 4.3.2-3).

Electronics

On the bottom of the scanner is where all the electrical parts are located.
These parts include a Raspberry Pi, controller board, 24V Power Supply Unit,
and Power inlet. These will collectively control the Scanner.

46

Sensor

The most important part is the scanner head. It is a combination of two PCB’s
(printed circuit board). One, Figure 4.3.2-7, is known as the control board,
which is connected to the electrical components on the bottom via wire to
control the other PCB for sensing. The second PCB is known as the sensor
head. This component is the actual sensing piece that will send and receive
millimeter wave scans. Figure 4.3.2-8 is the combination of those 2 PCBs that
will be a part of the scanner head that will connect to the middle of the
gantry system. The two of them combine to allow the control board to
interpret the raw data returned from the sensing board then output it via SPI
cabling through the DAQ. This is then stitched together using SAR algorithms
to create a composite image.

Diving further in, the imaging device or radar is actually composed of several
parts. The Digital Acquisitions (DAQ) device reads data out of the I+/- and Q+/-,
and depending on the configuration this can trigger the radar sweep as well.
The FTDI cable powers the radar, configures its registers, and commonly
triggers the radar frequency sweep. We wound up switching from a National
Instruments (NI) DAQ to using the Digilent Analog Discovery 2. This was due
to a lack of Linux support from the NI DAQ.

47

2. Software

To ensure easy and convenient control of the scanner, we will implement a
web application that runs directly on the Raspberry Pi, which will serve as the
central control hub for the scanner.

The development of the interface and connection to the scanner included the
implementation of html and css for the view of the application. The general
functionality of how the front-end communicates to the backend and how
the back-end communicates with the scanner is shown in Figure 4.3.2-9
below

Frontend-to-Backend

In the frontend, a javascript file, embedded in the web interface, handles all
communication between the frontend and backend via:

● HTTP Post Requests: Used for actions such as:
○ Sending movement commands
○ Initiating a scan with user-defined parameters
○ Uploading .scan files

48

● HTTP Get Requests: Used for:
○ Retrieving scanner status
○ Querying scan results or system logs
○ Position updates

● Websocket communication: enables real-time bidirectional messaging
between the frontend and backend, including

○ Live positional feedback during movement
○ Live status updates during scanning
○ Automatic saving on scan complete message
○ Notifications of system errors or completion events

These connections ensure the interface remains responsive and informative
during all scanner operations. Below shows the frontend-backend
communication via a POST request to move the sensor in a certain direction.

Backend

The backend is built with Flask
hosted on the Raspberry Pi. It is
responsible for:

● Parsing and validating user
inputs

● Generating appropriate
G-code commands

● Sending commands over
serial to the Octopus MCU

● Processing scan data and saving it to .scan files
● Trigger and manage scans
● Initiating SAR processing scripts

49

The Flask server also serves the static frontend files and acts as a bridge
between the user interface and the scanner hardware. As seen in the software
diagram, we started with a series of separate files for the backend and wound
up consolidating them all into one large file. In the end the MAVinator.py file
contained all logic aside from the DAQ, radar, and scan pattern generation
logic.

G-code + Hardware Control

All scanner motion and toolhead control are implemented using G-code,
which is interpreted by the Marlin firmware on the Octopus MCU. Key
functionalities include:

● Movement Commands: G0/G1 for linear motion, e.g., G1 X100 Y100 Z10
F3000

● Homing: G28 for homing all axes
● Scan Execution: Custom G-code sequences for moving in a grid and

pausing for data acquisition and movements to complete.
● Digital I/O: Used to trigger scans and synchronize with the radar

hardware

Each button press in the interface results in the corresponding G-code being
sent via a serial connection to the controller, ensuring deterministic and
repeatable behavior. Figure 4.3.2-12 shows the terminal output of clicking the
move button on the positive x with the input value of 30. It shows the
corresponding g-code that is being sent to the motion controller.

In order to accommodate the new radar and DAQ we had to somewhat
restructure how we had them wired together and mounted. The new radar
has a very similar connection method and can be seen in figure 4.3.2-13. Still

50

using a FTDI cable we simply had to match the inputs and then connect the
other end to our BTT Pi.

 The DAQ did however require a junction with the purple (trigger) wire to one
of its DIO pins in order for it to be triggered. The DAQ also required us to
connect the I- and Q- lines to ground and simply read the positive outputs.
The specific configuration of the Analogue Discovery 2 using the Digilent
Waveforms python library was considerably more difficult to understand at
first. Ultimately we needed to change the trigger position to be -½ the
sample time as the trigger is meant to happen halfway through your reading
by default. The DAQ is then connected back to the BTT Pi via USB.

51

Visual Interface Layout

The web interface is divided into three main tabs:

● Move Tab:
○ Buttons for X, Y, Z movement
○ Homing controls
○ Live coordinate display

● Scan Tab:
○ Input fields for scan configuration (start/end positions, step size,

delay)
○ “Start Scan” button
○ Live scan progress updates
○ Data preview plot

● SAR Tab:
○ Upload form for .scan files
○ SAR processing parameter inputs (e.g., resolution, clipping)
○ “Generate 3D SAR” button
○ Output display area

Each tab is designed with clarity and responsiveness in mind, utilizing CSS
grids, semantic UI components, and error feedback alerts. Figure 4.3.2-14
shows the first page that you see when you open the application. It shows the
move page and all the proper functionality. Additionally it has the banner tab
on the top to go to either the Scan or SAR tab.

52

Scanning

When on the Scan Tab, you can implement a scan and see the results in real
time. As shown in Figure 4.3.2-15, in order to scan you need to input multiple
different values for configuration such as: Name; X, Y and Z length and height;
and X and Y step size. In addition to this you can click the “Configure” button
which is optional and get a prompt shown in figure 4.3.2-16 asking for
specific frequency and time parameters. Once everything is configured, after
clicking “Start Scan” you will start to see real time data being plotted.

53

Sar Processing

Upon completion of a scan, the .scan file can be saved and the user can
upload any .scan file via the SAR tab and run SAR processing manually, by
providing the Max Z depth and Z step size.

After clicking the Calculate 3D SAR button, The SAR Heatmap Slice output is
displayed on the SAR tab as a downloadable image. The Below figure shows
this page and how everything is laid out.

Error Handling and Logging

The system implements robust error handling across all layers:

● Frontend: displays error alerts for invalid inputs or disconnected devices
● Backend: logs all system events and errors to a text log, accessible via

the interface

54

● Serial connection watchdog: detects dropped connections and
auto-resets the controller

This is also implemented in the status bar in the top right corner of every tab
as shown in the figures above. It outputs any error that occurs. This ensures
maintainability and transparency for debugging.

4.2.3. Functionality

Our 3D scanning platform is designed to be intuitive and easy to operate,
even for users without technical expertise. The system integrates a web
application that controls the scanner remotely. Below, we outline how a
typical user might interact with the system and how it would respond.

1. Setup and Initialization
a. User Action: the user powers on the scanner and opens the web

application on a browser.
b. System response: The web application connects to the Raspberry

Pi, which serves as the control hub and initializes communication
with the scanner's hardware. The user is greeted with a welcome
dashboard.

2. Manual Control Functionality
a. User Action: The user manually moves the scanner using

directional buttons or go to coordinates inputs and button.
b. System Response: The scanner interprets these inputs as G-code

commands, moves to the specified position, and updates the live
coordinate display on the GUI.

3. Homing and Alignment
a. User Action: the user selects the ‘home and align’ button to

ensure that the scanner is in the correct starting position
b. System Response: The Scanner head moves to its home position

in the XYZ space, preparing for a scan
4. Running the Scan (Scan configuration:

a. User Action: The user inputs configuration values and clicks the
“Start Scan” button on the web application

b. System Response: The scanner's stepper motors, connected by
belts, begin moving the scanner head along the XYZ coordinates
while the mm-wave imaging device collects data by emitting and
receiving millimeter waves. This data is relayed back to the

55

Raspberry Pi for processing. The web application provides
real-time feedback, displaying a progress bar and any relevant
status updates.

5. SAR processing:
a. User Action: Navigate to the SAR page and upload the file of the

created .scan file. Set the max depth of the desired observance
level and the step size. Lastly, click “Calculate SAR.”

b. System Response: Once clicked, the system runs a Synthetic
Aperture Radar (SAR) algorithm on the specified data to process
and create 2D slices of the object, starting at 0 and goin down to
the z depth specified by increments of the step size specified.

6. Viewing and Saving Results
a. User Action: the user reviews the processed 2D map or image on

the web application. The user can scroll down through the
different layers of the data using the slider bar.

b. System Response: the system displays the final 2D data.
7. Error Handling/Feedback

a. User Action: causing potential error
b. System Response: the interface will display an alert message.

Logs are stored on the backend for troubleshooting
8. File Saving

a. User Action: User clicks download button
b. System Response: downloads most recent scan

4.3.4. Areas of Concern and Development

Our current design provides the basic functionality of a 3D scanning platform
with millimeter-wave imaging capabilities. It meets the key requirements of a
scanning volume of 300 x 300 x 300 mm and a user-friendly web-based
interface. These features align well with the goal of delivering high-quality
scans with ease of use for non-technical users.

While we are confident in the functionality and general design, we have some
concerns. One concern regards the timing of the actual scan. Achieving a
scan in a short period of time compared to the already existing scanners is a
potential challenge. One other concern is about the complexity of the user
interface. Although the web-based interface is intended to be user-friendly,
ensuring that all users can operate it smoothly will require testing and may
cause more of a challenge than expected.

56

Another concern is ensuring that scanner movement stays within defined
bounds. Since the scanner operates using G-code instructions, improper or
unchecked commands could result in movement beyond the physical limits
of the frame, risking damage to the sensor head or mechanical components.
Implementing reliable bounds checking in both firmware and software, and
ensuring accurate homing behavior, is essential to maintain positional safety
and repeatability.

Regarding the time requirement, one possible plan could be to experiment
with the SAR processing algorithm or implement an adaptive scan that could
reduce scan time as well. Regarding the user interface, to ensure that we
create a user-friendly one, we can conduct usability tests with a sample group
of users and collect feedback.

4.4. TECHNOLOGY CONSIDERATIONS

We have implemented a number of different technologies to bring the
MAVinator to life.

● Voron Motion System

The Voron motion system comes from a cannibalized Voron printer kit
ordered specifically for this project. Voron’s open-source licensing,
modability, and large community make it an ideal technology to
implement into our design. The alternative option would be to buy a
three-axis motion stage/platform. While this would require a lot less
assembly it would be exorbitantly expensive [1], hard to modify, and still
require some setup physically or digitally.

Other alternative options within the Voron family include any other
version of Voron printer as the motion system. We selected Voron 2.4
with the core XYZ (floating gantry) due to the client's request and we
agreed due to its higher theoretical top speed, availability of an
example, and popularity.

Within the Voron 2.4 motion system that we are using we could have
selected other end-stops than the limit switches currently
implemented. The alternatives there are using Hall effect sensors, or
going for a sensorless homing process. We have shied away from doing
so in the first phase of the design due to the complexity hall effect

57

sensors would add, because of the risks involved in sensorless homing,
and because we have access to all of the limit switches that we need.

● 3D Printed Housing

The Housing being 3D printed offers up a number of options for
iterations and prototyping. The alternative in this case would be to have
housing manufactured by a company such as PCBway through a more
traditional method like CNC. While sending the designs off to have
them manufactured could result in parts with higher durability the time
trade-off is too severe. With 3D printing we can have a part made of
PETG in a matter of hours or a day at most resulting in a much faster
and more satisfying prototyping process. Additionally using a material
like PETG or ABS can result in a part with more than enough strength.

● In-House Sensor Board

The sensor and radar boards created in-house offer many advantages
over other alternatives. They were designed specifically for the purpose
of making millimeter wave scans. These boards have still required the
soldering of all the surface mount and through hole components. The
radar board is the more complicated of the two and is the one that
creates the millimeter wave signal. Much testing has to be done in
order to ensure that the board functions correctly as the main driver in
the sensor. The second board contains the antenna and a biasing
network to send out the signal generated by the radar board and then
capture the return signal to be processed. The frequency sweep is set
up to be triggered by a digital signal from the FTDI cable.

Having the boards designed in-house gives us great access for any
questions or concerns we have about the operation of the boards.
Several of the workers at the lab have experience with testing and
issues associated with them so we will be able to use their expertise to
help us diagnose issues along the way.

● FTDI cable

The FTDI cable is basically a usb to digital pin-out adapter. We utilize
this to program the registers that tell the sensor what frequencies to
sweep over and other KWARG(see gitlab) based parameters. Last

58

minute we also switched from using the National Instrument to trigger
the radar sweep to using one of the FTDI cables 3v digital I/O pin. In
order to ensure the sweep is triggered at the same time as the
measurement Luke made a spliced cable that took that signal and
branched off two ways to the DAQ and radar. This is plugged into the Pi.

● Digilent Analog Discovery 2 (USB oscilloscope)

The Digilent Analog Discovery 2 (AD2) was a last minute consideration,
but a very necessary one. This little device packs a lot of functionality in
a small form factor. We utilized its python SDK after familiarizing
ourselves with the WaveForms software user interface. The wide range
of functionality made it a little trickier to figure out how exactly to
configure the device as a DAQ for our purposes. We hardwired one of
the digital I/O pins on the AD2 to listen for a trigger that comes from
the FTDI cable. This starts our preconfigured recording process until the
buffer is filled up at which time we reap the data.

● Flask python webserver

In the MAVinator project, Flask serves as the backbone of our
web-based user interface. We've implemented Flask on the Raspberry
Pi to act as a server, managing communication between the frontend
web application and the underlying hardware control system. Flask
handles all requests from the user interface. Such as movement
commands, and translates them into G-code instructions for the
Octopus MCU. In the case of a scan it manages the thread that
generates the g-code and triggers the radar system at each point.

Furthermore, Flask handles the processes for scan data, saves it to files,
and triggers SAR processing algorithms. It also facilitates real-time
updates to the user interface through websockets, providing live
feedback on scanner status and position. Essentially, Flask acts as a
nervous system, orchestrating user interactions, hardware control, and
data processing within our MAVinator system.

59

5. Testing
5.1. UNIT TESTING

The MAVinator is composed of two main physical parts that need to undergo
testing: the Voron itself and the two circuit boards. The following sections will
discuss the testing of each component. After the completion of the previous
circuit board assembly we had to swap to a new radar which was tested for us
and is verified as satisfactory. In the second half of our project we focused
most of our testing on the code we created.

5.1.1. Voron Build

The Voron based portion of the scanner requires testing, and will occur in
three primary phases: Electronics smoke test, Basic motion testing, and
Advanced Motion testing. This phased testing will help to mitigate some risks,
risks of electronic component failure, risk of mechanical damage to motion
system components due to “dumb” motion, and risk of damage to the
millimeter wavelength sensor.

The first test upon completed construction consists of powering on the
printer with protection, our smoke test if you will. While the scanner is
plugged into a surge protector that has protection for shorts we will turn on
the power switch and inspect the printer with power on for 1 minute or until
we see something of concern. If there is a short due to component failure, the
surge strip should trigger and prevent catastrophic failure.

With a successful smoke test we begin the testing of the functionality of the
motion system with simple movements. After powering on, using a provided
test script we will ensure that the gauntry shuttle can move in the X, Y, and Z
directions both positive and negative. This test will not test the outer or inner
bounds, just short movements in all directions. If the distances, and directions
are correct and as expected then we will move onto the final.

Lastly there is the advanced motion test. This test consists of implementing
automated paths and making sure they operate as intended. The automation
that will be tested is “homing” the gauntry shuttle. In this motion the shuttle
is moved to X = 0, Y = 0, and Z = 350 with each motion ending when the
shuttle triggers an end stop. The first position moved to should be the X, then

60

the Y, and then the Z in order to properly trigger the third end stop. With that
test successful and positional accuracy established, we are ready to attach the
sensor.

5.1.2. Circuit Boards

The circuit boards required extensive testing as there are several
opportunities for errors to occur in the soldering process. Resistors or
capacitors could stand up in the reflow oven, integrated circuits could be
placed with the wrong orientation, or components could be shorted to
ground. Testing began with the more populated board which will henceforth
be referred to as the control board. The second board will be called the radar
board.

Testing of the control board began by visual inspection after soldering.
Immediately a couple of components were discovered that were not soldered
down correctly. The second step of the testing phase was ensuring that
nothing was connected to ground that wasn’t supposed to be. This is done by
using a multimeter and tapping soldering connections along the board to
check if they are grounded. Again, several connection points were discovered
to be incorrectly soldered. Those points were fixed, and testing continued
with path tracing. Path tracing involves following connected paths from the
power source back to where the power is needed to make sure there are no
breaks in the path. This test showed no issues and we moved on to the next
major test: connecting the control board to power.

The main purpose of this test is to check if the correct voltages are showing
up at every node. The board was tested using an FTDI cable to supply the
voltage. This test raised a flag which meant that something was awry. After
doing several tests with the integrated circuits and shift registers, then taking
them off completely and the error remained. This showed that the issue was
not related to those components. After some more investigation, we
discovered that the oscillator on the power board was shorted, but it was
covered up by a jumper wire not included in the original design which is why
it was originally overlooked. Once we took the oscillator off, cleaned up the
solder, and placed it back on the board, the power was much closer to
accurate, and we moved on to the radar board.

61

The radar board was much more simple to test as there are much less
components. The same tests were done on this board as on the control board.
The test for shorts came up with a few issues, but those were solved and no
other problems were detected.

We followed up with testing the two boards when placed together. When
checking the voltage levels at critical nodes, we noticed a lower voltage level
than expected, but continued to try and program the PLL on the board using
the FTDI cable. We discovered the board was not beginning programmed so
we traced each critical signal from the FTDI cable to the PLL using a
picoscope and discovered through this that a resistor was not fully soldered
and the PLL got rotated the second time we were putting it on the board so
the pins were misaligned. After fixing these two issues, the board passed all of
the tests needed before we attach it to a DAQ and observe the output.

The final test was to ensure proper functionality. We attached the IF_Q+, IF_Q-.
IF_I+, and IF_I- cables to the control board and set up the PCB system on a
scanner which allows us to read the data. The scanner in this test will be
replaced by the Voron in the final product. A piece of foam was scanned with
nine rubber plugs located at different depths throughout the foam. The data
was then filtered and had synthetic aperture radar(SAR) applied to it which
created two and three-dimensional images and those images came back
great, which means the PCB system is ready to be attached to the Voron.

62

5.2. INTERFACE TESTING

This section will outline the testing procedures for user-entered parameters,
including inputting unexpected, excessive, and mismatched data.
Additionally, it will detail regular use case testing, which has revealed that
frontend data does not persist on page change. This section will also cover
the testing of SAR algorithms using established scan files and their
comparison to a MATLAB script implementation.

 5.2.1. Backend API Testing

G-code testing

● Boundary Testing:
○ Ensuring that movement commands (G0/G1) respect the defined

limits of the scanner's x and y axes and does not attempt to move
beyond them, preventing physical damage. This was done by
using Pronterface to issue g-code that exceeds known bounds
directly. The power switch on the back of the scanner served as
an emergency stop.

● Z-Axis Safety:

63

○ Implementing and testing restrictions on Z-axis movement to
prevent the sensor head from colliding with the scanned object
or the base, incorporating both software and hardware (limit
switch) checks. This was tested after we had the UI implemented,
ensuring both the scan and motion controls wouldn’t go below
our defined threshold of 100mm with the new sensor.

● Homing Accuracy:
○ Verifying that the G28 homing command consistently and

accurately returns the scanner head to its designated home
position, ensuring reliable positional reference for scans. This was
done using the initial Pronterface testing to issue a G28 over a
serial connection.

● Scan Pattern Validation:
○ Testing the custom G-code sequences that define scan patterns

(e.g., grid movement, data acquisition pauses) to confirm they
execute as intended and produce the desired scanning behavior.
This was tested after the backend was more developed, using
NCview G-code simulator.

● Digital I/O Synchronization:
○ Thoroughly testing the digital input/output signals used to trigger

scans and synchronize the scanner's movement with the radar
hardware, ensuring seamless data acquisition during scans. This
was tested after the swap to the new radar and the backend was
almost completely developed. To test we ran scans and ensured
that the data readings were occurring within the allocated pause
between each movement, printing to the console when a sample
ended and then when the pause ended.

SAR

● Data Extraction:
○ Testing to ensure the data is imported in the correct manner and

that the array sizes of the data are correct. Also testing to verify
that the real and imaginary pairs get placed together properly.

● Data Processing Comparison:
○ Verifying that the data processing scripts result in the same data

as the MATLAB processing scripts currently used by the CNDE to

64

perform SAR calculations. Also need to confirm that the arrays are
returned with the correct dimensions.

● Data Heatmap Plotting:
○ Test the plotting feature to ensure that the data is being plotted

on the correct axis with the correct magnitude, and verify those
results using the pre-existing MATLAB scripts.

○ We also tested to ensure that the slider bar allows proper scrolling
through the slices of the scan, taking the correct step sizes, and
not taking too long to update the interface.

DAQ Testing

● Waveforms GUI and Data Comparison
○ The AD2 was initially connected to a laptop and controlled using

the Waveforms GUI. Data was collected and compared against
recent scans from the previous DAQ to ensure data consistency
and quality. This visual comparison allowed us to quickly see that
half of the buffer was empty at that trigger position. This resulted
in half of our sample being lost due to the default trigger position
being set to start with the buffer half full already.

● Object Manipulation and Sample Rate Verification
○ To verify the sample rate and overall responsiveness of the AD2,

we placed various objects in front of the sensor and manipulated
them while observing the real-time data stream in the
Waveforms GUI. This dynamic testing helped us confirm that the
AD2 was capturing data at the expected rate and accurately
reflecting changes in the environment.

● Integration with Backend and Firmware
○ Once initial testing in the Waveforms GUI was complete, we

integrated the AD2 with the Raspberry Pi backend. This involved
writing custom Python scripts to control the AD2's settings and
trigger data acquisition in sync with the scanner's movements.
Thorough testing was conducted to ensure seamless
communication and data transfer between all components.

65

 5.2.2. User Interface Testing

The web-based user interface was built using HTML, CSS and JavaScript and
tested iteratively through development. Testing focused on usability,
responsiveness , communication with the backend and visual clarity

● HTML
○ verified structural layout and element accessibility across

browsers
○ ensured all forms, buttons and input fields rendered properly and

were mapped to functional javascript actions
● STYLING (CSS)

○ Ensured responsiveness using flexbox/grid layouts and checked
for any layout breaking under user interaction.

○ Confirmed color themes matched CNDE's aesthetic preferences
and were accessible for low-vision users.

● JAVASCRIPT (connection to backend)
○ Ensured all frontend buttons triggered the correct HTTP POST or

WebSocket events.
○ Tested error handling (e.g., empty input fields, out-of-bounds

values) and validated feedback to the user.

5.2.3. Hardware Interface Testing

DAQ Hardware interface

The DAQ hardware interface did not require much testing as much of it is very
much lab ready but not field ready. The connections were tested to make sure
they had continuity and were taped to ensure minimal interference. The DAQ
hardware itself was tested by comparing its output signal to a known input
signal using WaveForms SDK.

Radar hardware interface

The hardware interface required a longer, less involved test duration to ensure
durability of the print. This particular print had a lot of internal stresses that
resulted in some prints breaking themselves once cooled. Additionally we test
for alignment by comparing the final connection points to the PCB it will
mount.

66

5.3. INTEGRATION TESTING

Initially, we conducted integration testing by issuing serial G-code commands
from the raspberry Pi to the marlin based control board, ensuring that the
integration of the two did not break either. This then allowed us to confidently
test the integration of the hardware mount for the sensor with the Voron
motion system, ensuring that neither impeded the function of either. We
then repeated these initial tests with the new sensor mount for the new
sensor. Following the initial tests, we proceeded with comprehensive testing
of the new sensor integrated with the new DAQ. During his phase performing
complete scans of various objects and comparing the results to known good
scans of the same subjects verifies the successful integration. This
comparative analysis will enable us to assess the accuracy and reliability of the
new sensor, ensuring that it meets the required standards for
millimeter-wave imaging.

By conducting thorough testing and validation at each stage of development,
we aim to ensure that the MAVinator delivers accurate and reliable 3D
scanning results, meeting the needs of our users and providing a valuable
tool for millimeter-wave imaging applications.

5.4. SYSTEM TESTING

System testing encompases using the system as a user would from start to
finish. The system’s web interface should be able to easily navigate to all the
control tabs; move, scan, and SAR. The controls available on each page should
be immediately apparent. The system should be connected to the backend
websockets immediately on each page. Critically, the system will be able to
run a scan with minimal interaction. This includes moving the sensor head to
initial position, and then pausing, sampling, moving and repeating. When this
completes a standard .scan file is saved to the system upon success. This scan
file can then be downloaded and uploaded to the SAR page for image
generation. The SAR image is then easy to navigate through the layers of.
Throughout all of this the user should be notified of errors but they should not
impede the operation of the system overall.

67

5.5. REGRESSION TESTING

Regression testing started once we started work on the firmware which
occurred at the start of the second semester. Constant regression testing
ensures that new code changes don't break existing functionality. Initially
performing tests on the printer to ensure that our modifications to the
firmware did not reduce functionality or reliability. More typically, post-merge
testing after we started writing the Flask code was crucial to catch integration
issues early. This was to prevent unexpected problems due to dependencies,
conflicts, or other differences. These post-merge issues are often addressed
with small, targeted code changes like bug fixes, configuration adjustments,
and dependency updates.

5.6. ACCEPTANCE TESTING

The design requirements we were presented with include having a motion
volume of 300mm x 300mm x 300mm or larger, an accuracy of 0.5 mm, a
graphical user interface, the ability to perform a scan on a uniform cartesian
grid, process the data using the SAR algorithm, and display the results. To
ensure our product met all of these requirements, we gave our product to our
client, Dr. Tayeb, and let him analyze it. He mentioned that we have created
the minimal viable product that can now be pivoted to the exact desire of the
users, which is exactly how Apply phones started.

5.7. USER TESTING

We have managed to test once with our primary user, Dr. Tayeb. Though we
have not done all the tests that we would like we did get a number of them
with one user. We asked Dr. Tayeb to move the printer as he desired using the
available movement commands on the move page. The user was asked to
home the printer and then navigate to the scan and SAR pages. We followed
up the navigation test with a scan test in which our user confirmed our
readings looked good. We would like to have the user save a .scan file and
reupload it for SAR processing. The last test performed was a test of the SAR
processing using a known good scan, asking Dr. Tayeb to navigate through
layers of the SAR image.

68

5.8. RESULTS

5.8.1. First PCB

The following results came from the PCB testing. These results come from a
scan of a piece of foam with nine rubber plugs dispersed at three different
levels within. The plugs can be clearly seen in the images which was the
desired outcome. This testing was done with our original PCB, but we were
required to change the PCB used for the final product due to extenuating
circumstances.

69

5.8.2. SAR Processing

To verify the results of the SAR processing of our web application, the results
were compared to the accepted results of the MATLAB program created by
Matthew Dvorsky. As can be seen in Fig. (5.8.2.-1) and Fig. (5.8.2.-2), the results
are extremely similar, and the defect can be clearly seen in the center of both
images. The difference between the two is the scaling of the axis. The
MATLAB has interactive scaling where the x and y axis can change total
length whereas the web application always displays the SAR results in a
square plot.

70

5.8.3. DAQ

When we replaced the DAQ we needed to test the measurement processes
we configured the DAQ for. We did this by comparing the data received to
that of known working radar output using our real time data visualization.
From these results we saw the expected curves, in the images the surface
measured is different.

71

5.8.4. System Testing (scanning)

These tests, while not complete, informed us of the basic next steps and
shortcomings we face. We conducted the simplest scan possible, a 20x20mm
scan using default radar parameters. This gave us very good results as
everything performed as expected. The next tests will consist of non-square
test grids in both directions, higher resolution scans, and taking a higher
resolution scan of control objects that have known good and easily
interpretable scans.

72

5.8.5. User Testing

We had two users, Dr. Tayeb and Matthew Dvorsky, test the MAVinator. The
MAVinator performed adequately, but both of them gave us valuable
criticisms. The most impactful criticism came from Matt, we should make our
scans start relative to the position of the sensor head, not centered on the bed
every time. Matt also noted that it would be more useful to have our Go-To
function automatically enter the sensor’s current location so that you can just
modify one of the three coordinates. Dr. Tayeb also noted that the SAR page
should give the user the option to adjust the Z-step size without re-uploading
the file. On the same page for SAR processing he theorized that we should be
able to pull the max Z-depth out from the .scan file information. With these
results sdmay15 can move forward confident that our next changes will bring
us closer to the desired finished product. There is still much user and
acceptance testing needing to be performed.

73

6. Implementation
The implementation of the complete product was done over two semesters
and broken into two main stages, with the first being hardware and done over
the course of the first semester and the second being the software and being
done over the course of the second semester

The implementation of the build of all the “hardware” has been completed in
four different stages: mechanical assembly, electronics integration, sensor
and housing, and end stops.

The implementation of the build of all the “software” has been completed in
five different stages: HTML requests, websockets, G-code generation, SAR
processing, and DAQ and Radar Classes.

 While Section 4. Design provides an in-depth look at the technical details,
this section offers an overview of the work completed this semester.

6.1 HARDWARE

6.1.1 Mechanical Assembly

Thus far, the majority of the mechanical assembly for the MAVinator scanner
has been completed. We began by constructing the frame using a Voron
2.4R2 printer kit as our foundation. This open-source motion platform
provided a base. Following the Voron build guide, we first assembled the
frame, ensuring that it was square. The gantry system, composed of linear
rails, belts, idlers, and stepper motors, was then integrated to enable precise
three-axis (X, Y, and Z) movement. The mechanical assembly now closely
resembles a high-precision 3D printer, but repurposed for millimeter-wave
scanning.

During this assembly phase, we focused heavily on proper alignment and
tensioning. The drive belts were carefully tensioned to ensure smooth,
backlash-free travel, and linear rails were checked for parallelism to meet our
0.5 mm positional accuracy requirement. Although this process involved
significant iteration—tightening, loosening, realigning—we have achieved a
stable, rigid motion platform capable of consistent, repeatable movement.

74

6.1.2. Electronics Integration

Following the mechanical build, we began integrating the electronic
components. We mounted the main controller board (Octopus MCU), power
supply, stepper drivers, and Raspberry Pi onto a lower deck beneath the
scanning platform. Each stepper motor has been wired into the motor drivers,
and initial continuity checks have confirmed that all wiring connections are
correct and secure.

Before adding sensors and end stops, we ran a basic power-up test to verify
the correct voltage outputs from the power supply and confirm that the
controller board powered up without issue. Preliminary tests show that the
motors can be energized and that no electrical shorts or grounding issues
were present.

6.1.3. Sensor and Housing

After completing the soldering and testing of the PCBs, we began to
implement it into the Voron. This required us to design a housing for the
sensor (PCBs put together) that would fix it to the Voron extruder. We used an
existing design for the housing as a base template for our design.
Modifications were necessary to attach it to the pre-existing mount on the
Voron and to hold the radar part of the scanner more firmly in place as it will
experience some vibrations as it moves around the scanning platform.

6.1.4. End Stops

The Voron kit we were supplied with did not come with the necessary end
stop parts to ensure that the extruder would not travel too far in any direction.
The Voron step file model contained many different mount versions, so we
simply selected the right one, then printed our own pieces. The kit did come
with the Y and Y end stops but the wires were too short for our
implementation so we redid those to make them the needed length and
routed them to the mount we printed.

The Z-axis end stop did not come with the kit. The CNDE lab had two more
already assembled Voron printers that were no longer using their Z-axis end
stops so we were able to salvage one of those end stops for our purposes.
Typically this end stop is located at the bottom of the printer, but for our
application, we needed it at the top. It is not designed for that, though, so we

75

created another 3D printed part that would hit the end stop when the
extruder travelled all the way to the top of the Voron frame in the home
position.

6.2. SOFTWARE

6.2.1. HTML Requests

HTML requests serve as a bridge between the frontend and the backend.
When a user clicks a button (e.g., "Start Scan", "Move Axis", or "Home"), the
HTML element (button) is connected to a corresponding JavaScript function.
This JavaScript function triggers an HTTP request to the backend, typically
using the fetch API with a .text or .json response type, depending on the
desired format. Once the backend receives the request, it routes the request
to an appropriate function, which processes the request based on the
functionality specified (e.g., starting a scan, moving an axis, or homing). The
backend then communicates with the motion controller, sending the
corresponding G-code to perform the requested operation.

6.2.2. Websockets

Websockets are used lightly in the design of the backend, primarily for scans
and data processing. Flask-socketio is used to send initial connection
messages, disconnect messages, live errors as they happen, and scan status
information. When a start scan message is broadcast the backend websocket
listener starts a new thread to generate the g-code and starts sending the
commands via serial. Scan started is broadcast back over the websocket
connection as well as an eventual scan completed message. These along with
other error messages broadcast via websockets are displayed in the status
box visible on all pages. We had an implementation of live websocket position
updates but this was not as efficient as keeping track of the position with
each movement command.

6.2.3. Gcode Generation

The G-code generation for scanning is done significantly differently from
G-code generated for movement commands. Movement commands are hard
coded with a preceding relative move mode command, G91. This is then
followed by a hard coded G0 command with the delta relative to the
scanner’s current position. Alternatively this is done with a G0 command

76

directly for go-to-position style movement commands. For both operations
the sensor location is updated with each movement.

In the backend the pattern G-code generation is handled in a somewhat
modular manner. This modularity could be enhanced with a base python
class that other scan pattern classes would overwrite. In our case it is simply
handled within a function that is broken off into its own file. This function
takes in the object dimensions, step sizes, and z-height, then generates a
snake-wise pattern starting from the front right corner of the scan plate.
When the dimensions are entered in the front end they are verified as easily
divisible by the step sizes or not and the user is given options to automatically
correct the discrepancy. Once the pattern is generated it is stored in a python
list of G-code commands then each one is processed and the sensor location
is updated.

6.2.4 Scan File Saving

Scan file saving is done by saving operational data as well as measured data
at each scan point. The operational data includes the frequency range that
the scanner is scanning each point at. These values are stored in an array that
is cleared and then populated each time a scan is initiated by pulling it from
the sensor itself. The frequency range only needed to be calculated once per
scan and not at each point like the other data. The other operational data
that is taken at each scan point is the coordinates that the scan took place at,
so the X, Y, and Z coordinates. Each iteration would store an array of the
coordinates to another array for processing later. Lastly, the measured data
coming out of the radar needed to be stored in an array as well to correspond
with each coordinate stored. After a scan is complete and the data is stored in
their respective arrays, they are passed to the export_scan function to be
exported into a .scan file. The export_scan function takes the filename given
by the user in the scan page, the coordinate points, the measured data points,
as well as the frequency range used by the radar to generate the .scan file.
The export_scan function was derived from a given matlab script that we
converted to python for use in our scanner.

6.2.5. SAR Processing

The purpose of the SAR processing is to return images of the collected data
that is capable for a human to visually analyze. It takes the returned

77

S-parameters, turns the data into the time domain, and returns the
magnitude at each data point taken. For this project, we were provided with
working MATLAB code that needed to be converted to python code to use in
the web application. Five total files needed to be translated: a file to import
the data, a file to perform 2D processing on the data, one to perform 3D
processing, one to create 3D SAR data in case you have bistatic separation,
and one to calculate the gaussian of the antenna. For the current
implementation of our project, only the scan importing and 3D processing
are necessary, but the others were also translated in case of future work.

Import Scan

The import scan file takes an input of a .scan file and returns the x, y,
frequencies, data, and the header. The imported file has all of the real and
imaginary data separated in one long list, so it is necessary to group the pairs
back together. That data then needs to be assigned to their respective x and y
coordinates. This proved more difficult than expected because the ‘reshape’
function in MATLAB does not work the same as the ‘reshape’ function in the
NumPy library. This made it necessary to manually assign the data to the
correct coordinate pairs. After that is complete, the data is transposed to the
correct dimensions.

SAR Processing 3D

This file does all of the necessary processing on the data to make it easily
understandable by the user. It can take several arguments, with the necessary
ones being the data, x, y, and z coordinates, and frequency coordinates, and
the unnecessary but more commonly used ones being the zero pad percent
and the option of removing averaging. Some initial preprocessing is done on
the data to apply the zero padding and calculating the wavenumber.

The data with the zero padding applied then has 2-dimensional Fast Fourier
Transform (FFT) applied to it to turn it into time domain data. This allows us to
‘look into’ the material being scanned by knowing how long it took the wave
to reflect back to the antenna. That data is then divided by the wavenumber.
Next, the data is mapped to the z-depth values. Some more data processing is
done to get the image to appear correctly, and finally the inverse FFT is
calculated to finalize the plotting of the data.

78

6.2.6 DAQ and Radar Classes

The DAQ and Radar classes, much like the g-code pattern generation, were
designed in a somewhat modular manner. Writing these in a more modular
fashion with parent classes that could be implemented or overwritten would
have aided this project when it came time to switch DAQ’s and sensors.
Regardless, our implementation was done through direct addition of classes
(ADF and Simulated) to the Radar class and adding functionality to the
DAQ/FTDI classes to support a Digilent DAQ’s software development kit.

The switching of the radar itself did not impose many changes, but the
switching of the DAQ did actually require a number of tricks. The first trick to
using the Digilent Waveforms SDK was having its specific dll library installed
on the Pi. The second was setting the digital I/O 1 pin to be a trigger in order
to ensure timing accuracy regardless of computer constraints. Lastly the third
trick was moving the trigger position to be half of the sample count
multiplied by the sample rate.

6.3. DESIGN ANALYSIS

Our implemented design works to the standard that we were given. We can
successfully move the sensor through the use of the web application. The
tracking of the sensor head through sliders works well, but the speed does
not directly match. We have proven that we can run a scan that collects
accurate data using the new sensor we received and DAQ. We are then able
to save that data in a .scan file to the user’s device. That .scan file can then be
uploaded to the web application and have SAR processing performed on the
data to a specified depth with a given step size. That data is then plotted in a
heatmap image that the user can visually decipher. The web application also
has a more modern appearance which was desired by our client. This all
works because we set out with a definitive goal in mind, and worked
diligently until we got the results we were looking for.

One part that does not work quite as well as expected is the SAR image
displays an entirely green heatmap at a depth of 0, which is not expected.
Fortunately, that data is not used as the sensor is never positioned directly on

79

top of the material being scanned so this is not a major issue. All of the other
data is plotted correctly.

Another shortcoming we noticed in our design was that when each page is
refreshed the data entered is lost. This is not a major problem as most are
simple values, though for repeated activities over a longer work session may
get repetitive.

80

7. Ethics and Professional
Responsibility
In designing and developing the MAVinator scanner, our team recognizes
that engineering ethics and professional responsibility extend beyond
technical correctness. Ethical conduct involves considering how our work
affects users, the environment, society, and compliance with professional
standards. We aim to uphold the highest ethical principles, ensuring safe,
beneficial, and equitable outcomes.

7.1. AREAS OF PROFESSIONAL RESPONSIBILITY/CODES OF ETHICS

Area of
responsibility

Definition IEEE Team interaction

Willingness to
learn and
improve

Having an open
mind and active
desire to gain
new knowledge
and skills,
constantly
seeking ways to
enhance your
performance or
abilities in any
given situation

To seek, accept,
and offer honest
criticism of
technical work, to
acknowledge
and correct
errors, to be
honest and
realistic in stating
claims or
estimates based
on available data,
and to credit
properly the
contributions of
others;

The team has
constantly
sought out
feedback
internally, from
our advisor, and
at certain points
from external
sources as well.
Always giving
great care to the
feedback
received and
finding ways to
take it into
account.

7.1.1. Area in Which the Team is Performing Well:

One area in which we are doing well is communication honesty. This is
defined as Perform work of high quality, integrity, timeliness, and professional
competence. The team has had honest and transparent communication with
each other and has assisted in high quality work. By maintaining open lines of

81

communication with our mentor, we can acknowledge when we are behind
schedule and also actively seek feedback on any issues we have. This
approach enables us to meet professional standards in timeliness,
competence, and overall project integrity

7.1.2. Area in Which the Team Needs to Improve:

While our technical progress and open-source platform help with cost
benefits, we recognize that we need to improve our financial responsibility to
ensure that the final product remains valuable and cost-effective. Some
high-priced electronic components can cause a challenge to budget
constraints. An approach to improve this area is to consider more thorough
cost-benefit analyses, engage in market research, and explore more
resource-efficient designs.

7.2. FOUR PRINCIPLES

Below is a table connecting four ethical principles—beneficence,
nonmaleficence, respect for autonomy, and justice—to broader context areas.
We assume these broader context areas include: Public health, safety, and
welfare; Global, cultural, and social; Environmental and Economic
considerations

82

7.2.1. Four Principles Table

7.2.2. Broader Context-Principle Pair

Our design strongly meets the pairing of Economic Respect of Autonomy.
Going so far as to make the project Open Source with python as the
predominant language in use for our software interface. Conversely we are
lacking in Global social and cultural respect for autonomy because we have
not yet researched any ways of making our software more accessible to
non-english speakers.

7.3 VIRTUES

7.3.1. Team Virtues

Integrity: Being honest and transparent in communication, test reporting,
and documentation. We have consistently provided truthful updates to our
advisor and documented both successes and challenges.

83

Responsibility: Owning our tasks and deadlines, ensuring that everyone
completes their work on time and at a high standard. We create shared
timelines and check in regularly to ensure accountability.

Collaboration: Supporting one another by sharing knowledge, assisting with
complex tasks, and respecting each other’s expertise. We hold weekly
meetings to discuss progress, solve problems collectively, and ensure no
member is left struggling in isolation.

7.3.2. Individual Virtues

Nathan Reff

● Demonstrated Virtue:
○ Through our senior design work, I believe I have demonstrated

strong collaboration skills, particularly through the work in the lab
sessions with Daniel. Whenever we met to work on the scanner,
we would delegate tasks properly. For example, if one of us was
focusing on aligning and tensioning the gantry belts, the other
would handle preparing the necessary tools and components,
ensuring that our workflow remained smooth and efficient. By
rotating responsibilities and working cohesively, we were able to
make substantial progress this semester.

● Not Yet Demonstrated Virtue:
○ One virtue I feel I didn’t have the opportunity to demonstrate

effectively was innovation, particularly in terms of creativity. Most
of our project this semester was following a guide in building the
scanner, which left limited room for open-ended problem-solving.

○ With the design of the user interface, and the more open ended
requirements I hope to use innovation more. I’ll have more
freedom to introduce innovative ideas into the GUI’s layout,
workflows and data presentation techniques

Luke Post

● Demonstrated Virtue:
○ This year I have done a good job demonstrating the virtue of

commitment to quality. A commitment to quality is important to
me and this project because without it, our product will not work
well and it won’t be something that I would be proud to have

84

created. I do not want to put out a product that I am embarrassed
to put my name on.

○ I have demonstrated this virtue throughout the assembly of the
PCBs. They need to be carefully and accurately created to ensure
a clean output. If we do not have a clean output then our product
will not function properly. After testing the PCBs, we do see a
clean output due to the quality of work that was done when
assembling them.

● Not Yet Demonstrated Virtue:
○ I have not done an amazing job demonstrating the virtue of

having respect for nature. Several times I have used more product
or materials than I needed because I made a mistake on the first
attempt. These products come from natural materials that get
wasted. Our final product will also not give back to the
environment in any way.

○ What I need to do to demonstrate this virtue is be more
considerate of the materials I am using and do things correctly
the first time so those materials are not wasted.

Daniel Ripley-Betts

● Demonstrated Virtue:
○ A high degree of social awareness and teamwork has been

demonstrated consistently in this project. There has been a great
deal of value put on collaboration and efforts for equitable
teamwork in all the efforts I have put into this project. This has
paid off in spades and I could not have asked for a better group as
the effort has been reciprocated.

● Not Yet Demonstrated Virtue:
○ I struggled to demonstrate courage at certain moments when we

faced adversity during the second half of this project. It took a
very supportive team to keep me motivated when we had to
make major changes last minute.

James Peterson

● Demonstrated Virtue:
○ This year I have demonstrated the virtue of listening to feedback.

This is true of feedback from teammates, clients, advisors, etc. I

85

feel I have effectively taken feedback from others to use it to
improve upon our project or my understanding of requirements.
This has been quite useful in creating the right product for our
client.

● Not Yet Demonstrated Virtue:
○ One virtue I believe I can continue to improve on is stepping out

of my comfort zone. I have avoided doing things I am not already
knowledgeable about and leave that to others you are more
experienced while taking on tasks I am already experienced with
myself. Improving this virtue could help not only myself to
expand my knowledge base but also help the team once I’ve
learned the task.

86

8. Conclusions
8.1. SUMMARY OF PROGRESS

Over the course of this project, we have made substantial progress toward
building the MAVinator scanner. Our goals were creating a 3D (XYZ) scanning
platform for millimeter-wave imaging, ensuring an imaging volume of at least
300 mm x 300 mm x 300 mm, achieving positional accuracy of 0.5 mm, and
developing a user-friendly Python-based interface. Thus far, we have
successfully completed the minimum viable product (MVP). Assembling a
gantry system adapted from the Voron platform. We also completed initial
electronics integration, set up sensor mounting solutions, imaged Marlin
firmware onto the MCU. Although we have not fully finished user and systems
testing we have a very viable product.

Looking ahead, the best plan of action is to continue the progress we have
already made. The MAVinator does not require too much more work to be a
highly polished lab tool suitable for any lab environment. Please see 8.3 Next
Steps for more details.

8.2. VALUE PROVIDED

Our client, Dr. Tayeb, has been wanting a new scanner in the CNDE lab as the
current scanners are used extremely often, and scans can take long periods of
time to complete. Our product also does not need a computer specified just
for it to run as we have made it accessible from the web. This will provide
more availability for the researchers in the lab to complete scans quickly and
efficiently.

Aside from that, we have demonstrated the ability to take a device originally
intended for 3D printing, and turn it into a scanning system. Our goal for the
project was to make it open source and plug in style so a user can take off the
current antenna and replace it with one of their own. All that would be
necessary would be to put the code in to control the new antenna. We
received the opportunity to do this when we were required to change
antennas and DAQs. Now we have both sets of functional code in the project.

Due to our project scope changing in the last two weeks regarding the
antenna and DAQ, though, we were not able to test the entire functionality of

87

the scanner or implement everything we desired. However, we believe from
the testing we have done is sufficient to say that our product works. This
project has a lot of future work that could be done to make it an even more
powerful tool for Dr. Tayeb and the CNDE.

8.3. NEXT STEPS

8.3.1. SAR

Our current implementation of SAR has the minimum number of features
required and still contains a couple of bugs. With more time, these are things
we would have fixed or implemented to give our user an even better
experience.

● Green Heatmap at Layer 0
○ As of right now, layer 0 of the heatmap image is completely

green. Some calculation that takes place is causing an error at
that layer.

● Depth and Step Size After Calculating SAR
○ Our client has mentioned to us that he would like to be able to

change the depth and step size after calculating SAR, not only
when the .scan file is uploaded.

● Rendering a 3D Interactable Plot
○ We would like to be able to take all of the slices that can be seen

in the 2D heatmap image and turn them into one plot.
○ The user should be able to pan, rotate, and zoom in on specific

parts of the plot
● Display the Raw Data on a Plot before SAR Calculations

○ We would like to have the raw data on a heatmap plot as well,
then have the raw data replaced by the SAR data once the SAR
calculation is run.

○ This would also be necessary for the following next steps to
happen.

● Perform Extra Manual Processing on the Raw Data
○ Crop the data to only see a specified x and y range.
○ Filter the data using high pass, low pass, or any other filters that

may make the resulting image better.
○ Be able to apply resampling to the raw data to smooth out some

of the sharp changes.

88

○ We would like to able to specify what coloring scheme is used on
the SAR heatmap instead of ‘jet’ being the only choice.

8.3.2. Modular Classes

● DAQ and Radar
○ Writing abstract base classes for both the Radar chip and DAQ

would have helped us this semester to more easily switch from
the previous radar to the new one as well as swapping our DAQ.

○ Each implementation of a radar chip would have its own concrete
class that implements the interface laid out in the abstract base
classes for the DAQ’s and Radar respectively. This would allow
each class’s slight nuances to be swapped when switching
devices.

○ This would allow for easy swapping of radars and the DAQ.

● Scan Pattern
○ Implementing an abstract base class would give more formal

requirements for developers to create their own scan patterns.
○ Implementing a concrete class for each different type of pattern

gives the user more flexibility. Some patterns may include
fortran-like, circular, and triangular patterns.

○ This would allow for easier switching of scan patterns down the
line, potentially from within the UI as well.

○ There may be potential for scans to occur over the z-axis as well.

8.3.3. UI

● The user interface could always stand improvements for our own
purposes as well as client desires.

○ Upgrading the javascript libraries we use could enhance the
overall feel of the user interface.

○ Implementing more instances of Flask forms may also help with
data loss on page refreshes.

○ We would also like to upgrade the positional sliders to move
accurately with the printer’s given feedrate, displaying the target
end destination of the sensor at the same time as the current
position.

89

9. References
[1] “VORON2.4,” vorondesign.com. https://vorondesign.com/voron2.4

[2] R. Appleby, D. A. Robertson, and D. Wikner, “Millimeter wave imaging: a
historical review,” Proceedings of SPIE, May 2017, doi:
https://doi.org/10.1117/12.2262476.

[3] M. Sabbir, S. Sanjib Sur, S. Nelakuditi, and P. Ramanathan, “MilliCam:
Hand-held Millimeter-Wave Imaging.” Available:
https://cse.sc.edu/~sur/papers/Sabbir_ICCCN20_MilliCam.pdf

[4] M. A. Abou-Khousa, M. S. U. Rahman, K. M. Donnell, and M. T. A. Qaseer,
“Detection of Surface Cracks in Metals Using Microwave and Millimeter-Wave
Nondestructive Testing Techniques—A Review,” IEEE Transactions on
Instrumentation and Measurement, vol. 72, pp. 1–18, 2023, doi:
https://doi.org/10.1109/TIM.2023.3238036.

[5] H. Murakami, T. Fukuda, Hiroshi Otera, H. Kamo, and A. Miyoshi,
“Development of a High-Sensitivity Millimeter-Wave Radar Imaging System
for Non-Destructive Testing,” Sensors, vol. 24, no. 15, pp. 4781–4781, Jul. 2024,
doi: https://doi.org/10.3390/s24154781.

[6] T.-H. Pham, K.-H. Kim, and I.-P. Hong, “A Study on Millimeter Wave SAR
Imaging for Non-Destructive Testing of Rebar in Reinforced Concrete,”
Sensors, vol. 22, no. 20, p. 8030, Oct. 2022, doi:
https://doi.org/10.3390/s22208030.

[7] C. Viegas et al., “Active Millimeter-Wave Radiometry for Nondestructive
Testing/Evaluation of Composites—Glass Fiber Reinforced Polymer,” IEEE
Transactions on Microwave Theory and Techniques, vol. 65, no. 2, pp. 641–650,
Feb. 2017, doi: https://doi.org/10.1109/tmtt.2016.2625785.

[8] Bengisu Yalcinkaya, E. Aydin, and A. Kara, “Millimeter-Wave SAR
Imaging for Sub-Millimeter Defect Detection with Non-Destructive Testing,”
Electronics, vol. 14, no. 4, pp. 689–689, Feb. 2025, doi:
https://doi.org/10.3390/electronics14040689.

90

https://vorondesign.com/voron2.4
https://doi.org/10.1117/12.2262476
https://cse.sc.edu/~sur/papers/Sabbir_ICCCN20_MilliCam.pdf
https://doi.org/10.1109/TIM.2023.3238036
https://doi.org/10.3390/s24154781
https://doi.org/10.3390/s22208030
https://doi.org/10.1109/tmtt.2016.2625785
https://doi.org/10.3390/electronics14040689

[9] “Zaber Technologies,” Zaber.com, 2025.
https://www.zaber.com/products/xy-xyz-motorized-stages/XYZ (accessed Apr.
19, 2025).

91

10. Appendices
APPENDIX 1 - OPERATIONAL MANUAL

This section contains descriptions and images of our scanner operations. It
will walk through how to operate the scanner and outline key details to
inform the user of all of its functionality.

A.1.1. Connecting to the UI

On startup the pi will load the software to run the server. So, all you need to
do after the pi is up and running properly is enter the device's IP address into
your browser to pull up our web-based UI. The IP address is dependent upon
the device and network so you must know this in order to connect to the UI.

A.1.2. Move Page

The Move page is the page that you will be greeted by after connecting to the
server. This page is used for moving and homing the scanner head (Figure
A.1.2).

Box 1 is used to move the X, Y, and Z axis with a given value. Just enter the
value in the box and click the respective button to move the sensor. Box 2 will
display the current sensor location dynamically for the user’s consistent
awareness of where the sensor is. Box 3 is for homing the sensor. There are
options to home each axis individually or it can home them all at one. Box 4
is for entering a position to move the sensor to in one motion. Simply enter
the coordinates desired and click go and it moves the sensor there.

92

A.1.3. Scan Page

The scan page is used to configure and perform scans. There are a number of
inputs for this page for the user to provide.

Looking at figure A.1.3-1 to begin, there is an input for the scan file name to be
saved. Next are the dimensions of the scan, including the X and Y distances
to be scanned and the Z height of the object being scanned. Lastly is the
step size that the sensor should use during its scan.

There is also the option to configure the scanner (Figure A.1.3-2). There are
default values so this configuration is optional. To configure the scanner there
are a few parameters to provide. These parameters are the number of
frequency points, start frequency, stop frequency, sweep time, and ramp
delay.

After clicking the start scan button, real time data from the scanner will be
displayed on the plot on the screen. This can be used to ensure the scanner is
working as expected and to get a general idea of output from the scanner.

93

A.1.4. SAR Page

The SAR page is for presenting scans in a human understandable format. It
takes a .scan file as input to display a 3D representation of the scan results.

The page takes a .scan file as an input, a max z-depth for the SAR to display, as
well as z step size for the SAR to display Z depths (Figure A.1.4-1).

After entering these parameters and clicking “upload file”, a ready indicator
will appear above the Calculate SAR button (Figure A.1.4-2). This will allow you
to calculate the 3D SAR display.

The third section then displays the heatmap of the given .scan file for the user
to view and understand (Figure A.1.4-3). The user can use the slider at the
bottom to display different Z depts of the scan, moving at the step size given
before.

A.1.5. Status Box

The Status Box is located on every page floating in the top right corner. Here
you will see messages displayed regarding the operation of the scanner.

94

Additionally, this status box is where you can perform an emergency stop and
download the most recent .scan file with the respective buttons.

The status box contains a text box to display status messages such as scan
progress and two buttons to perform an emergency stop and to download
the most recent .scan file.

This will pop up when an emergency stop is issued to inform the user of a
required restart. A status message will be displayed in the status box as well.

95

APPENDIX 2 - ALTERNATIVE/INITIAL VERSION OF DESIGN

This section details the significant design iterations and changes that
occurred during the MAVinator project, highlighting the rationale behind
each adjustment.

A.2.1. Initial Sensor and Radar Setup

● Description: The initial design involved a specific millimeter-wave
sensor and associated radar board. This setup was integral to the early
stages of testing and development.

● Change: Due to unforeseen circumstances, the original radar was
required for another project within the CNDE lab. This necessitated a
switch to a different radar unit.

● Rationale: The need for the original radar elsewhere was beyond the
project team's control. The change was unavoidable to ensure the lab's
overall needs were met.

96

A.2.1.2: Prior PCB Layout

97

A.2.2. Sensor Mount Redesign

● Description: An initial sensor housing/mount was designed based on
the dimensions and specifications of the original radar unit.

● Change: The switch to the new radar required a complete redesign of
the sensor mount. The new radar had different dimensions, connection
points, and physical requirements.

● Rationale: The new mount had to securely hold the new radar, ensure
proper alignment for scanning, and fit within the existing constraints of
the Voron motion system. This change was a direct consequence of the
radar swap.

98

A.2.2.2: Sensor Mount Drawing

99

A.2.3. Codebase Adjustments

● Description: The initial software development was geared towards
interfacing with the original sensor and its data acquisition methods.

● Change: With the new radar and DAQ, significant portions of the
codebase needed to be rewritten. This included changes to data
acquisition, signal processing, and control logic.

● Rationale: The new hardware had different communication protocols,
data formats, and triggering requirements. The software had to be
adapted to these new parameters to ensure proper functionality.

A.2.4. Digital Acquisition (DAQ) Device Swap

● Description: The project initially planned to use a National Instruments
(NI) DAQ device for data acquisition.

● Change: Late in the project, it was discovered that the NI DAQ lacked
proper Linux support, which was crucial for the Raspberry Pi-based
control system. The team switched to a Digilent Analog Discovery 2
(AD2).

● Rationale: The AD2 provided the necessary Linux support and a Python
SDK, making it compatible with the project's software architecture. This
change was essential for ensuring the system could operate as
intended.

A.2.5. Early UI Considerations

● Description: The team considered building off of a previous LabView UI,
building a UI from scratch, and building a modification for an existing
library like Octoprint or Klipper.

● Change: The team decided on building a Web based user interface
similar to the likes of Klipper using Flask.

● Rationale: The LabView UI was not user friendly and needed
improvements, building from scratch was a good option but left some
unknown variables for the client and unfamiliarity with the current UI.
Modifying an existing library like Octoprint or Klipper would impose too
many requirements and dependencies on the project.

100

A.2.6. Impact of Changes

These changes led to increased development time, unexpected challenges,
and the need for adaptability. However, they also resulted in a more robust
and versatile final product. The switch to the AD2, for example, ensured
compatibility and long-term maintainability.

APPENDIX 3 - OTHER CONSIDERATIONS

Quote to describe the project: “Sometimes you can’t see the mountain
behind the hill you are climbing”

- Daniel Ripley-Betts

APPENDIX 4 - CODE

Github repository: https://git.ece.iastate.edu/sd/sdmay25-15

All of the code that we worked on is under Luke/FlaskMavinator

 APPENDIX 5 - ACKNOWLEDGEMENTS

The MAVinator project would not be where it is today if it were not for a
collective effort from many people. This section is where our team would like
to acknowledge some of the direct and indirect contributions of people who
helped us along the way, and from work others performed in the past.

 Aaron McCarville - Aaron’s invaluable work on millimeter wavelength
sensors and its original mounting solution was done before we began.

Trent Moritz - Trent has helped us at almost every step of the way, whether
that was access to the build space, 3D printing assistance, testing the sensor,
or discussing how the scans will actually happen.

Mat Dvorsky - Mat has helped greatly in the testing, troubleshooting, and
in his previous works. Without Mat’s SAR code we would have required
substantially more time to develop our SAR implementation. The entirety of
the .scan format is also Mat’s creation and our implementation is based on it.

101

https://git.ece.iastate.edu/sd/sdmay25-15

Burk Weber - Burk and Trent both work in and around the lab we were
building in at the CNDE. Burk was instrumental in high quality 3D prints and
bouncing ideas off of. Good company to be around.

Dr. Tayeb - While Dr. Tayeb is both our advisor and our client and was
somewhat pressured to help, our team would still like to acknowledge the
lessons that Dr. Tayeb shared with us in the process of building the motion
system.

Thank you to the above and many more unmentioned heroes who listened to
our speeches and supported us through late nights of work on our project.

APPENDIX 6 - TEAM CONTRACT

A.6.1. Team Members

● Nathan Reff
○ Motion System Lead
○ Computer Engineering

● Daniel Ripley-Betts
○ Sensor Mount Lead
○ Computer Engineering

● Luke Post
○ Sensor PCBs Lead
○ Electrical Engineering

● James Peterson
○ Software Design Lead
○ Computer Engineering

A.6.2 Required Skill Sets for your Project

Creating the MAVinator scanner has several necessary skill sets. Without
these, the product could face design delays and an inefficient product.

● Electrical Circuit Soldering
○ This is essential to this product because the PCBs needed to be

assembled. We received schematics and unpopulated boards for
both of the PCBs, but they still needed to be accurately soldered
to ensure proper operation. The end stops needed wire

102

extensions as well which required recreating the wire leads from
the end stop to the control board.

● Electrical Circuit Testing
○ The PCBs have several sources of potential error which need to be

identified. Proper knowledge on how to test and find errors in
circuits is essential to the timeliness of the creation of the
MAVinator.

● Mechanical Systems Knowledge
○ The assembly of the Voron scanner required a lot of knowledge

about mechanical systems. Although the documentation on the
assembly process is detailed, the assembly kit still has several
advanced features that need to be properly installed including
the belt and gantry system and the electronics and wiring.

● Web Application Development
○ The MAVinator will be controlled through a web application that

we will make. Therefore it is crucial that this skill set is covered
otherwise the MAVinator will not function properly. The GUI for
this web app also has to be aesthetically pleasing according to
our client beyond just providing functionality.

● Software Development
○ The code controlling the MAVinator that will be sent through the

use of the web application must be developed by our team as
well. This will be what sends the gcode commands to the Voron
printer which is how the printer moves and is therefore vitally
important.

● 3D design/modeling
○ A housing is needed to integrate our PCB system into the Voron

scanner. To create this we will use 3D modeling software, then
print it out on a 3D printer.

A.6.3. Skill Sets covered by the Team

● Electrical Circuit Soldering
○ Luke + Daniel

● Electrical Circuit Testing
○ Luke

● Mechanical Systems Knowledge
○ All

103

● Web Application Development
○ Daniel + Nate + James

● Software Development
○ Daniel + Nate + James

● 3D design/modeling
○ Daniel

A.6.4. Project Management Style Adopted by the Team

We employ a hybrid approach combining elements of both Waterfall and
Agile methodologies to efficiently manage the MAVinator project.

A.6.5. Initial Project Management Roles

In this project we adopted a democratic or participative leadership style
amongst ourselves. In this management style everyone is considered equal,
and issues or major changes must be adopted by all group members with
equal say in the matter. No one group member controlled the project, instead
we all followed a logical flow according to our individual understandings of
the project.

A.6.6. Team Contract

Team Members:
1) _James Perterson_________________ 2) _Nate Reff______________________
3) _Luke Post______________________ 4) _Daniel Ripley-Betts______________

Team Procedures

1. Day, time, and location for regular team meetings:

❖ We will meet Friday at the university library from

2:30pm-3:00pm

2. Preferred method of communication updates, reminders,

issues, and scheduling:

❖ Communication will occur via Discord:

https://discord.gg/jzKjzVqc

3. Decision-making policy:

104

https://discord.gg/jzKjzVqc

❖ Final decisions will be made with majority rule + Rock
Paper Scissors & Tayeb for ties

4. Procedures for record keeping:

❖ We will make use of Google Drive, Git, and Discord

Participation Expectations

1. Expected individual attendance, punctuality, and

participation at all team meetings:

❖ If you can't make it to a meeting let us know,
otherwise, please participate wherever possible.

2. Expected level of responsibility for fulfilling team

assignments, timelines, and deadlines:

❖ We will all share responsibility for all aspects of this project, but if
a task is assigned or taken specifically, that individual is
responsible for a minimum 51% of that task.

3. Expected level of communication with other team

members:

❖ Read and react/respond to messages in the general
channel on the Discord server

❖ Use the appropriate channels for your messages on
Discord. For example, avoid using general group chat
channel for non-general or individual communication.

4. Expected level of commitment to team decisions and tasks:

❖ Please make your opinion known & voice heard

wherever possible.

Leadership

1. Leadership roles for each team member (flexible and subject
to change):

Luke: Circuit board testing, Tayeb outreach

James: Voron & Scanner calibration

105

Nate: Team Organization

Daniel: Team internal communication & Voron build

2. Strategies for supporting and guiding the work of all team

members:

1. Being gently, honestly, and openly critical

2. Holding each other accountable

3. If not meeting standards, a direct example will be

given

3. Strategies for recognizing the contributions of all team

members:

1. Active: Reflection & Reports, Verbal expression of

gratitude

2. Passive: Author of documents/code, sending a

message, notes

Collaboration and Inclusion

Skills, expertise, and unique perspectives each team member
brings to the team:

Luke: Experience Soldering, electrical circuit knowledge,
experience with microwave scanners
James: Experience with Python development, GUI

development, and sonar & IR scanning/calibration

Nate: Experience in python, and with Arduino platform

Daniel: Experience with 3D printing, coding, soldering,

older perspective

Strategies for encouraging and supporting contributions and
ideas from all team members:

1. No idea is bad idea (brainstorming channel)

2. Do not hesitate to provide honest Feedback, but try to

do so in productive ways

106

Procedures for identifying and resolving collaboration or
inclusion issues:

❖ post in general or bring it up during a meeting,
preferably with as much specifics as possible

❖ Alternatively message any of us

Goal-Setting, Planning, and Execution

1. Team goals for this semester:
❖ Get all hardware assembled, & a plan for software

❖ Have fun working together on a large scale

engineering project

❖ Learn a bit about professional design & engineering

practices

2. Strategies for planning and assigning individual and team
work:

1. Based off interest & skill sets

2. Based on current workloads

3. Strategies for keeping on task:
❖ Weekly meetings

❖ Trying to ask productive questions

Consequences for Not Adhering to Team Contract

1. How will the team handle infractions of any of the obligations of this
team contract?

First perform a sanity check with other group mates. If they agree,
everyone arranges a group meeting to try to resolve the infractions.

2. What will the team do if the infractions continue?

The group will seek out our Professors (Fila/Shannon), or in some odd
circumstances Dr. Tayeb.

**

107

a) I participated in formulating the standards, roles, and procedures as stated in this
contract.

b) I understand that I am obligated to abide by these terms and conditions.
c) I understand that if I do not abide by these terms and conditions, I will suffer the

consequences as stated in this contract.

1) ____________________Nathan Reff_________________ DATE ____05/04/2025______
2) _______________James Perterson________________DATE ____05/04/2025______
3) __________________Luke Post____________________ DATE ____05/04/2025______
4) __________________Daniel Ripley-Betts__________ DATE ____05/04/2025______

108

	MAVinator
	Design Document
	Executive Summary
	Learning Summary
	DEVELOPMENT STANDARDS & PRACTICES USED
	SUMMARY OF REQUIREMENTS
	APPLICABLE COURSES FROM IOWA STATE UNIVERSITY CURRICULUM
	NEW SKILLS/KNOWLEDGE ACQUIRED THAT WAS NOT TAUGHT IN COURSES

	Table of Contents
	
	1. Introduction
	1.1. PROBLEM STATEMENT
	1.1.1. Project Narrative

	1.2. INTENDED USERS
	1.2.1. Background of Users
	1.2.2. Four Types of Users
	1. Lab Technician
	2. Governmental Clients
	3. Private Clients
	4. Senior lab Technicians

	1.2.3. Empathy Map

	2. Requirements, Constraints and Standards
	2.1. REQUIREMENTS AND CONSTRAINTS
	2.1.1. Physical Requirements
	2.1.2. Functional Requirements (specification)
	2.1.3. Resource Requirements
	2.1.4. Aesthetic Requirements
	2.1.5. User Experiential Requirements
	2.1.6. Environmental Requirements
	2.1.7. UI requirements

	2.2. ENGINEERING STANDARDS
	2.2.1. Built-in Standards
	2.2.2. Design Standards

	
	3. Project Plan
	3.1. PROJECT MANAGEMENT/TRACKING PROGRESS
	3.2. TASK DECOMPOSITION
	3.2.1. Hardware Task Decomposition
	3.2.2. Software Task Decomposition

	3.3. PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA
	3.3.1. Milestones 1:
	3.3.2. Milestones 2

	
	3.4. PROJECT TIMELINE/SCHEDULE
	3.5. RISKS AND RISK MANAGEMENT/MITIGATION
	3.5.1. Key Risks:
	3.5.2. Risk Management Matrix

	
	3.6. PERSONNEL EFFORT REQUIREMENTS
	3.6.1 Hardware
	3.6.1 Software
	

	3.7. OTHER RESOURCE REQUIREMENTS
	3.7.1 Hardware

	
	3.7.2 Software

	
	4. Design
	4.1. DESIGN CONTEXT
	 4.1.1. Broader Context
	4.1.2. Prior Work/Solutions
	4.1.3. Technical Complexity

	4.2. DESIGN EXPLORATION
	4.2.1. Design Decisions
	4.2.2. Ideation
	4.2.3. Decision-Making and Trade-off Tables

	4.3. FINAL DESIGN
	4.3.1. Overview
	
	4.3.2. Detailed Design and Visual(s)
	1. Hardware
	2. Software
	

	4.2.3. Functionality
	4.3.4. Areas of Concern and Development

	4.4. TECHNOLOGY CONSIDERATIONS

	5. Testing
	5.1. UNIT TESTING
	5.1.1. Voron Build
	5.1.2. Circuit Boards

	5.2. INTERFACE TESTING
	5.2.1. Backend API Testing
	5.2.2. User Interface Testing
	5.2.3. Hardware Interface Testing

	5.3. INTEGRATION TESTING
	5.4. SYSTEM TESTING
	5.5. REGRESSION TESTING
	5.6. ACCEPTANCE TESTING
	5.7. USER TESTING
	5.8. RESULTS
	5.8.1. First PCB
	5.8.2. SAR Processing
	5.8.3. DAQ
	5.8.4. System Testing (scanning)
	5.8.5. User Testing

	6. Implementation
	6.1 HARDWARE
	6.1.1 Mechanical Assembly
	6.1.2. Electronics Integration
	6.1.3. Sensor and Housing
	6.1.4. End Stops

	6.2. SOFTWARE
	6.2.1. HTML Requests
	6.2.2. Websockets
	6.2.3. Gcode Generation
	6.2.4 Scan File Saving
	6.2.5. SAR Processing
	6.2.6 DAQ and Radar Classes

	6.3. DESIGN ANALYSIS

	7. Ethics and Professional Responsibility
	7.1. AREAS OF PROFESSIONAL RESPONSIBILITY/CODES OF ETHICS
	7.1.1. Area in Which the Team is Performing Well:
	7.1.2. Area in Which the Team Needs to Improve:

	7.2. FOUR PRINCIPLES
	7.2.1. Four Principles Table
	7.2.2. Broader Context-Principle Pair

	7.3 VIRTUES
	7.3.1. Team Virtues
	7.3.2. Individual Virtues

	8. Conclusions
	8.1. SUMMARY OF PROGRESS
	8.2. VALUE PROVIDED
	8.3. NEXT STEPS
	8.3.1. SAR
	8.3.2. Modular Classes
	8.3.3. UI

	9. References
	
	10. Appendices
	APPENDIX 1 - OPERATIONAL MANUAL
	A.1.1. Connecting to the UI
	A.1.2. Move Page
	A.1.3. Scan Page
	A.1.4. SAR Page
	A.1.5. Status Box

	
	APPENDIX 2 - ALTERNATIVE/INITIAL VERSION OF DESIGN
	A.2.1. Initial Sensor and Radar Setup
	A.2.1.2: Prior PCB Layout

	
	
	A.2.2. Sensor Mount Redesign
	A.2.2.2: Sensor Mount Drawing

	A.2.3. Codebase Adjustments
	A.2.4. Digital Acquisition (DAQ) Device Swap
	A.2.5. Early UI Considerations
	A.2.6. Impact of Changes

	APPENDIX 3 - OTHER CONSIDERATIONS
	APPENDIX 4 - CODE
	 APPENDIX 5 - ACKNOWLEDGEMENTS
	APPENDIX 6 - TEAM CONTRACT
	A.6.1. Team Members
	A.6.2 Required Skill Sets for your Project
	A.6.3. Skill Sets covered by the Team
	A.6.4. Project Management Style Adopted by the Team
	A.6.5. Initial Project Management Roles
	A.6.6. Team Contract
	

