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Background Information

❖ CNDE (Center for Non-Destructive Evaluation)
➢ Millimeter wavelength imaging

■ Detect defects in metals and other materials
● To be used in industry or governmental 

applications
■ Ensuring materials meet safety and reliability 

standards
❖ Limited millimeter wavelength scanner capacity

➢ Pre-existing scanners are slow
➢ Current user interfaces are bulky and hard to 

update
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❖ 300 mm x 300 mm x 300 mm volume
➢ positional accuracy of 0.5 mm
➢ Operate within 2.2-2.3mm wavelength range

❖ Develop a Python based user interface.
➢ Home and align the scanner
➢ Perform automated scans on a uniform cartesian or user-defined grid
➢ Configure scanner parameters
➢ Perform data collection from a millimeter-wave device
➢ Process the data using SAR algorithm and display results

Technical Requirements
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MAVinator Project 
Overview
Goal:
❖ Design the physical and digital 

interfaces for our 3D millimeter 
wavelength imaging system

Benefits:
❖ Compact, affordable, 

professional, and easy to 
maintain

❖ Python based, web-hosted  
intuitive, user interface
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Overview

Scan, Files, and SAR 
Implementation04 ➢ Performing a Scan

➢ Saving Files

Backend03 ➢ External Connections
➢ Radar + DAQ Classes

Frontend02 ➢ Html, CSS, JS
➢ Movement

Build + Electronics01 ➢ Compute/Control Boards
➢ Sensor Housing

➢ Status Box
➢ Libraries

➢ Radar + DAQ Setup
➢ Limit Switches

➢ G-Code Pattern
➢ .scan File System
➢ Endpoints

➢ SAR Algorithm
➢ Viewing SAR Data
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Build
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1

Frame Belts + Rails

2

Motors

3

PCB (Sensor)
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Electronics

Raspberry Pi BTT Motion 
Controller

Internal Power 
Supply (PSU)

Automatic movement

➔ Connection from the computer to the raspberry pi and given firmware uploaded to BTT

➔ Successful wiring and utilizing previous User interface for automatic movement
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https://docs.google.com/file/d/1mDJ02_iF9VuRyGoHskMAXXOtqzTJhgZA/preview
https://docs.google.com/file/d/1qWa1vPxem39W_tvBTmdoixvg6sm0ozil/preview
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Sensor Housing
Sensor housing was redesigned to 
support new radar

Current approach: Modify existing 
model with minimal changes 

● increased compatibility with existing 
equipment 

● time constraints



External Connections

Ethernet (1) - Connecting to the MAVinator and 
controlling it via web UI.

DAQ (2)  - Connected to BTT Pi via USB  for 
configuration and data acquisition from SPI

FTDI (3) - Programing radar’s registers, triggers DAQ 
and radar

Serial (4) - G-code to Marlin firmware on MCU

External PSU - Supplies 5V to Radar
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Digilent 
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Software Overview
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➢ Files
○ HTML, CSS, JS,
○ Python (Flask)

➢ Connection
○ Frontend to Backend
○ Backend to Scanner

➢ Pages
○ Move
○ Scan
○ SAR



Endpoints

● Core Role: The main application file, connecting the web frontend to hardware 
control, data acquisition, and processing.

● Key Web Endpoints (HTTP):
○ Motion Control: /move, /goTo, /homeOne, /homeAll (POST requests to 

control sensor position), /emergencyStop (POST).
○ Status: /getCoordinates (GET request to retrieve current position).
○ Radar Control: /initRadar (POST to initialize radar hardware/simulation).
○ SAR Processing: /SAR (GET/POST for upload, calculation & display), 

/plot/sar_heatmap_slice/<z_index> (GET for SAR image slices).
○ Data: /download (GET to download scans).
○ Pages: /move, /SAR, /plot (Serve HTML pages).

● Real-time Communication (SocketIO):
○ Handles start_scan event from frontend.
○ Emits scan_data_point, scan_complete, scan_error during scans.

● Frameworks: Built using Flask and Flask-SocketIO.
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G-code Scan Pattern
Generation

Designed as an independent script for easy 
modification.

Based off of the idea objects will be centered on 
build plate and a given Z-height.
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First data point



Radar and DAQ classes

● Purpose: Control custom radar hardware & acquire data.

● Two Main Modules:
○ DigilentDaq.py : High-level classes (Initialize, 

Measure, Close, Parameters, Simulation mode).
○ radarControl.py : Low-level hardware 

communication functions (FTDI, Triggering, Data 
Acquisition).

● Benefit: Flexible design supports different DAQ systems & 
simulation provided you know how to write a class for 
them.
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Scan file handling

Proprietary .scan format support

Saved as soon as scan finishes

Import and export

Flattens data into point cloud of individual 
data points
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Web Application - Move

15

https://docs.google.com/file/d/1onMNBgzy0mIYc5eWsyaHgvB4KETpGz2k/preview


Web Application - Status 
Box
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➢ Uses websockets for real time status updates
➢ Outputs messages to inform user on scanner operation
➢ Allows for file saving and emergency stop
➢ Helps detect errors for debugging
➢ Persists on all web pages



Web Application - Scan
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https://docs.google.com/file/d/1IxBA24fK4wJz0-dSqaAP7QGRcXt4a60D/preview


Synthetic Aperture Radar (SAR)

● Angular Resolution is dependent on the 
wavelength/diameter of the aperture

● Can create an “synthetic aperture” by moving the 
antenna, taking multiple images, and combining those 
multiple viewpoints

○ Allows for much better resolution
● Apply processing to turn data into a heatmap
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“Synthetic Aperture”



Web Application - SAR
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https://docs.google.com/file/d/1SpRXv5NBc6eWtMtUAOZx-6nM8H-Gnk0q/preview


Final Product
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Future Work

➔ Modular classes that inherit from base class
◆ DAQ
◆ Radar
◆ Scan pattern 

➔ Further refining the user interface
➔ Updating file management system
➔ Adding final physical polish
➔ Update the BTT Pi access method from IP to URL
➔ System testing for exporting data collected by 

comparing to known good scans of same object
➔ Relative scan pattern generation
➔ Final testing
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Questions?
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Questions?
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First Semester PCB

❖ Supplied with a PCB and all the components
➢ Reflow oven
➢ Hand soldering

A1

❖ Testing
➢ Visual
➢ Continuity
➢ Voltage Level
➢ SPI


