
MAVinator: A High-Precision
Millimeter-Wave 3D Scanner

SDMay25-15
Client: Dr. Tayeb | CNDE

Nathan Reff, Luke Post, Daniel Ripley-Betts, James Peterson
1

Background Information

❖ CNDE (Center for Non-Destructive Evaluation)
➢ Millimeter wavelength imaging

■ Detect defects in metals and other materials
● To be used in industry or governmental

applications
■ Ensuring materials meet safety and reliability

standards
❖ Limited millimeter wavelength scanner capacity

➢ Pre-existing scanners are slow
➢ Current user interfaces are bulky and hard to

update

2

❖ 300 mm x 300 mm x 300 mm volume
➢ positional accuracy of 0.5 mm
➢ Operate within 2.2-2.3mm wavelength range

❖ Develop a Python based user interface.
➢ Home and align the scanner
➢ Perform automated scans on a uniform cartesian or user-defined grid
➢ Configure scanner parameters
➢ Perform data collection from a millimeter-wave device
➢ Process the data using SAR algorithm and display results

Technical Requirements

3

MAVinator Project
Overview
Goal:
❖ Design the physical and digital

interfaces for our 3D millimeter
wavelength imaging system

Benefits:
❖ Compact, affordable,

professional, and easy to
maintain

❖ Python based, web-hosted
intuitive, user interface

4

Overview

Scan, Files, and SAR
Implementation04 ➢ Performing a Scan

➢ Saving Files

Backend03 ➢ External Connections
➢ Radar + DAQ Classes

Frontend02 ➢ Html, CSS, JS
➢ Movement

Build + Electronics01 ➢ Compute/Control Boards
➢ Sensor Housing

➢ Status Box
➢ Libraries

➢ Radar + DAQ Setup
➢ Limit Switches

➢ G-Code Pattern
➢ .scan File System
➢ Endpoints

➢ SAR Algorithm
➢ Viewing SAR Data

5

Build

6

1

Frame Belts + Rails

2

Motors

3

PCB (Sensor)

4

Electronics

Raspberry Pi BTT Motion
Controller

Internal Power
Supply (PSU)

Automatic movement

➔ Connection from the computer to the raspberry pi and given firmware uploaded to BTT

➔ Successful wiring and utilizing previous User interface for automatic movement

7

https://docs.google.com/file/d/1mDJ02_iF9VuRyGoHskMAXXOtqzTJhgZA/preview
https://docs.google.com/file/d/1qWa1vPxem39W_tvBTmdoixvg6sm0ozil/preview

8

Sensor Housing
Sensor housing was redesigned to
support new radar

Current approach: Modify existing
model with minimal changes

● increased compatibility with existing
equipment

● time constraints

External Connections

Ethernet (1) - Connecting to the MAVinator and
controlling it via web UI.

DAQ (2) - Connected to BTT Pi via USB for
configuration and data acquisition from SPI

FTDI (3) - Programing radar’s registers, triggers DAQ
and radar

Serial (4) - G-code to Marlin firmware on MCU

External PSU - Supplies 5V to Radar

9

BTT Pi

BTT Octopus (MCU)
1 32 4

Digilent
DAQ

PSU

SPI

Software Overview

10

➢ Files
○ HTML, CSS, JS,
○ Python (Flask)

➢ Connection
○ Frontend to Backend
○ Backend to Scanner

➢ Pages
○ Move
○ Scan
○ SAR

Endpoints

● Core Role: The main application file, connecting the web frontend to hardware
control, data acquisition, and processing.

● Key Web Endpoints (HTTP):
○ Motion Control: /move, /goTo, /homeOne, /homeAll (POST requests to

control sensor position), /emergencyStop (POST).
○ Status: /getCoordinates (GET request to retrieve current position).
○ Radar Control: /initRadar (POST to initialize radar hardware/simulation).
○ SAR Processing: /SAR (GET/POST for upload, calculation & display),

/plot/sar_heatmap_slice/<z_index> (GET for SAR image slices).
○ Data: /download (GET to download scans).
○ Pages: /move, /SAR, /plot (Serve HTML pages).

● Real-time Communication (SocketIO):
○ Handles start_scan event from frontend.
○ Emits scan_data_point, scan_complete, scan_error during scans.

● Frameworks: Built using Flask and Flask-SocketIO.

11

G-code Scan Pattern
Generation

Designed as an independent script for easy
modification.

Based off of the idea objects will be centered on
build plate and a given Z-height.

12

First data point

Radar and DAQ classes

● Purpose: Control custom radar hardware & acquire data.

● Two Main Modules:
○ DigilentDaq.py : High-level classes (Initialize,

Measure, Close, Parameters, Simulation mode).
○ radarControl.py : Low-level hardware

communication functions (FTDI, Triggering, Data
Acquisition).

● Benefit: Flexible design supports different DAQ systems &
simulation provided you know how to write a class for
them.

13

Scan file handling

Proprietary .scan format support

Saved as soon as scan finishes

Import and export

Flattens data into point cloud of individual
data points

14

Web Application - Move

15

https://docs.google.com/file/d/1onMNBgzy0mIYc5eWsyaHgvB4KETpGz2k/preview

Web Application - Status
Box

16

➢ Uses websockets for real time status updates
➢ Outputs messages to inform user on scanner operation
➢ Allows for file saving and emergency stop
➢ Helps detect errors for debugging
➢ Persists on all web pages

Web Application - Scan

17

https://docs.google.com/file/d/1IxBA24fK4wJz0-dSqaAP7QGRcXt4a60D/preview

Synthetic Aperture Radar (SAR)

● Angular Resolution is dependent on the
wavelength/diameter of the aperture

● Can create an “synthetic aperture” by moving the
antenna, taking multiple images, and combining those
multiple viewpoints

○ Allows for much better resolution
● Apply processing to turn data into a heatmap

18

… … …

“Synthetic Aperture”

Web Application - SAR

19

https://docs.google.com/file/d/1SpRXv5NBc6eWtMtUAOZx-6nM8H-Gnk0q/preview

Final Product

20

Future Work

➔ Modular classes that inherit from base class
◆ DAQ
◆ Radar
◆ Scan pattern

➔ Further refining the user interface
➔ Updating file management system
➔ Adding final physical polish
➔ Update the BTT Pi access method from IP to URL
➔ System testing for exporting data collected by

comparing to known good scans of same object
➔ Relative scan pattern generation
➔ Final testing

21

Questions?

22

Appendi
x

A

Questions?

24

First Semester PCB

❖ Supplied with a PCB and all the components
➢ Reflow oven
➢ Hand soldering

A1

❖ Testing
➢ Visual
➢ Continuity
➢ Voltage Level
➢ SPI

